Nustatyti kreivį cikloidės
ϕ
(
t
)
=
x
=
a
(
t
−
sin
t
)
,
ψ
(
t
)
=
y
=
a
(
1
−
cos
t
)
{\displaystyle \phi (t)=x=a(t-\sin t),\quad \psi (t)=y=a(1-\cos t)}
jos laisvai pasirenkame taške (x ; y ).
Sprendimas.
ϕ
′
=
d
x
d
t
=
a
(
1
−
cos
t
)
,
ϕ
″
=
d
2
x
d
t
2
=
a
sin
t
,
ψ
′
=
d
y
d
t
=
a
sin
t
,
ψ
″
=
d
2
y
d
t
2
=
a
cos
t
.
{\displaystyle \phi '={\frac {dx}{dt}}=a(1-\cos t),\quad \phi ''={\frac {d^{2}x}{dt^{2}}}=a\sin t,\quad \psi '={\frac {dy}{dt}}=a\sin t,\psi ''={\frac {d^{2}y}{dt^{2}}}=a\cos t.}
Įstatydami gautas išraiškas į formulę (3), randame:
(
neteisingas
)
K
=
|
d
2
y
d
x
2
|
[
1
+
(
d
y
d
x
)
2
]
3
2
=
|
a
cos
t
a
sin
t
|
[
1
+
(
a
sin
t
a
(
1
−
cos
t
)
)
2
]
3
2
=
cos
t
sin
t
[
1
+
(
sin
t
(
1
−
cos
t
)
)
2
]
3
2
=
cos
t
sin
t
[
1
(
1
−
cos
t
)
2
(
(
1
−
cos
t
)
2
+
sin
2
t
)
]
3
2
=
{\displaystyle ({\text{neteisingas}})\;\;K={\frac {\left|{\frac {d^{2}y}{dx^{2}}}\right|}{\left[1+\left({\frac {dy}{dx}}\right)^{2}\right]^{3 \over 2}}}={\frac {\left|{\frac {a\cos t}{a\sin t}}\right|}{\left[1+\left({\frac {a\sin t}{a(1-\cos t)}}\right)^{2}\right]^{3 \over 2}}}={\frac {\frac {\cos t}{\sin t}}{\left[1+\left({\frac {\sin t}{(1-\cos t)}}\right)^{2}\right]^{3 \over 2}}}={\frac {\frac {\cos t}{\sin t}}{\left[{\frac {1}{(1-\cos t)^{2}}}((1-\cos t)^{2}+\sin ^{2}t)\right]^{3 \over 2}}}=}
=
cos
t
sin
t
[
1
(
1
−
cos
t
)
2
(
1
−
2
cos
t
+
cos
2
t
+
sin
2
t
)
]
3
2
=
cos
t
sin
t
[
1
(
1
−
cos
t
)
2
(
2
−
2
cos
t
)
]
3
2
=
cos
t
sin
t
[
2
1
−
cos
t
]
3
2
=
{\displaystyle ={\frac {\frac {\cos t}{\sin t}}{\left[{\frac {1}{(1-\cos t)^{2}}}(1-2\cos t+\cos ^{2}t+\sin ^{2}t)\right]^{3 \over 2}}}={\frac {\frac {\cos t}{\sin t}}{\left[{\frac {1}{(1-\cos t)^{2}}}(2-2\cos t)\right]^{3 \over 2}}}={\frac {\frac {\cos t}{\sin t}}{\left[{\frac {2}{1-\cos t}}\right]^{3 \over 2}}}=}
=
cos
t
sin
t
(
1
−
cos
t
2
)
3
=
cos
t
sin
t
sin
3
t
2
.
{\displaystyle ={\frac {\cos t}{\sin t}}\left({\frac {\sqrt {1-\cos t}}{\sqrt {2}}}\right)^{3}={\frac {\cos t}{\sin t}}\sin ^{3}{\frac {t}{2}}.}
(
teisingas
)
K
=
|
ψ
″
ϕ
′
−
ψ
′
ϕ
″
|
[
(
ϕ
′
)
2
+
(
ψ
′
)
2
]
3
2
=
|
a
(
1
−
cos
t
)
a
cos
t
−
a
sin
t
⋅
a
sin
t
|
[
a
2
(
1
−
cos
t
)
2
+
a
2
sin
2
t
]
3
2
=
|
a
2
cos
t
−
a
2
cos
2
t
−
a
2
sin
2
t
|
[
a
2
−
2
a
2
cos
t
+
a
2
cos
2
t
+
a
2
sin
2
t
]
3
2
=
{\displaystyle ({\text{teisingas}})\;\;K={\frac {\left|\psi ''\phi '-\psi '\phi ''\right|}{\left[(\phi ')^{2}+(\psi ')^{2}\right]^{3 \over 2}}}={\frac {|a(1-\cos t)a\cos t-a\sin t\cdot a\sin t|}{\left[a^{2}(1-\cos t)^{2}+a^{2}\sin ^{2}t\right]^{3 \over 2}}}={\frac {|a^{2}\cos t-a^{2}\cos ^{2}t-a^{2}\sin ^{2}t|}{\left[a^{2}-2a^{2}\cos t+a^{2}\cos ^{2}t+a^{2}\sin ^{2}t\right]^{3 \over 2}}}=}
=
|
a
2
cos
t
−
a
2
|
[
2
a
2
−
2
a
2
cos
t
]
3
2
=
a
2
|
cos
t
−
1
|
2
3
2
a
3
[
1
−
cos
t
]
3
2
=
1
2
3
2
a
[
1
−
cos
t
]
1
2
=
1
2
3
2
a
⋅
2
sin
t
2
=
1
8
a
|
sin
t
2
|
.
{\displaystyle ={\frac {|a^{2}\cos t-a^{2}|}{\left[2a^{2}-2a^{2}\cos t\right]^{3 \over 2}}}={\frac {a^{2}|\cos t-1|}{2^{3 \over 2}a^{3}\left[1-\cos t\right]^{3 \over 2}}}={\frac {1}{2^{3 \over 2}a\left[1-\cos t\right]^{1 \over 2}}}={\frac {1}{2^{3 \over 2}a\cdot {\sqrt {2}}\sin {\frac {t}{2}}}}={\frac {1}{8a|\sin {\frac {t}{2}}|}}.}
Apskaičiavimas kreivio linijos, užrašytos lygtimi polinėse koordinatėse
keisti
Tegu kreivė užrašyta lygtimi pavidalo
ρ
=
f
(
θ
)
.
(
1
)
{\displaystyle \rho =f(\theta ).\quad (1)}
Užrašysime formules perėjimo iš polinių koordinačių į dekartines:
x
=
ρ
cos
θ
,
y
=
ρ
sin
θ
.
(
2
)
{\displaystyle x=\rho \cos \theta ,\quad y=\rho \sin \theta .\quad (2)}
Jeigu į šitas formules įstatyti vietoje
ρ
{\displaystyle \rho }
jo išraišką per
θ
,
{\displaystyle \theta ,}
t. y.
f
(
θ
)
,
{\displaystyle f(\theta ),\;}
tai gausime:
x
=
f
(
θ
)
cos
θ
,
y
=
f
(
θ
)
sin
θ
.
(
3
)
{\displaystyle x=f(\theta )\cos \theta ,\quad y=f(\theta )\sin \theta .\quad (3)}
Paskutines lygtis galima nagrinėti kaip parametrines lygtis kreivės (1), be kita ko parametras yra
θ
.
{\displaystyle \theta .}
Tada
d
x
d
θ
=
d
ρ
d
θ
cos
θ
−
ρ
sin
θ
,
d
y
d
θ
=
d
ρ
d
θ
sin
θ
−
ρ
cos
θ
,
{\displaystyle {\frac {dx}{d\theta }}={\frac {d\rho }{d\theta }}\cos \theta -\rho \sin \theta ,\quad {\frac {dy}{d\theta }}={\frac {d\rho }{d\theta }}\sin \theta -\rho \cos \theta ,}
d
2
x
d
θ
2
=
(
d
2
ρ
d
θ
2
cos
θ
−
d
ρ
d
θ
sin
θ
)
−
(
d
ρ
d
θ
sin
θ
+
ρ
cos
θ
)
=
d
2
ρ
d
θ
2
cos
θ
−
2
d
ρ
d
θ
sin
θ
−
ρ
cos
θ
,
{\displaystyle {\frac {d^{2}x}{d\theta ^{2}}}=({\frac {d^{2}\rho }{d\theta ^{2}}}\cos \theta -{\frac {d\rho }{d\theta }}\sin \theta )-({\frac {d\rho }{d\theta }}\sin \theta +\rho \cos \theta )={\frac {d^{2}\rho }{d\theta ^{2}}}\cos \theta -2{\frac {d\rho }{d\theta }}\sin \theta -\rho \cos \theta ,}
d
2
y
d
θ
2
=
(
d
2
ρ
d
θ
2
sin
θ
+
d
ρ
d
θ
cos
θ
)
+
(
d
ρ
d
θ
cos
θ
−
ρ
sin
θ
)
=
d
2
ρ
d
θ
2
sin
θ
+
2
d
ρ
d
θ
cos
θ
−
ρ
sin
θ
.
{\displaystyle {\frac {d^{2}y}{d\theta ^{2}}}=({\frac {d^{2}\rho }{d\theta ^{2}}}\sin \theta +{\frac {d\rho }{d\theta }}\cos \theta )+({\frac {d\rho }{d\theta }}\cos \theta -\rho \sin \theta )={\frac {d^{2}\rho }{d\theta ^{2}}}\sin \theta +2{\frac {d\rho }{d\theta }}\cos \theta -\rho \sin \theta .}
Įstatant paskutinę išraišką į formulę (1) praeito skyriaus, gausime formulę apskaičiavimui kreivio kreivės polinėse koordinatėse:
K
=
|
ψ
″
ϕ
′
−
ψ
′
ϕ
″
|
[
ϕ
′
2
+
ψ
′
2
]
3
2
=
|
d
2
y
d
θ
2
d
x
d
θ
−
d
y
d
θ
d
2
x
d
θ
2
|
[
(
d
x
d
θ
)
2
+
(
d
y
d
θ
)
2
]
3
2
=
{\displaystyle K={\frac {|\psi ''\phi '-\psi '\phi ''|}{[\phi '^{2}+\psi '^{2}]^{3 \over 2}}}={\frac {\left|{\frac {d^{2}y}{d\theta ^{2}}}{\frac {dx}{d\theta }}-{\frac {dy}{d\theta }}{\frac {d^{2}x}{d\theta ^{2}}}\right|}{\left[\left({\frac {dx}{d\theta }}\right)^{2}+\left({\frac {dy}{d\theta }}\right)^{2}\right]^{3 \over 2}}}=}
=
|
(
d
2
ρ
d
θ
2
sin
θ
+
2
d
ρ
d
θ
cos
θ
−
ρ
sin
θ
)
(
d
ρ
d
θ
cos
θ
−
ρ
sin
θ
)
−
(
d
ρ
d
θ
sin
θ
−
ρ
cos
θ
)
(
d
2
ρ
d
θ
2
cos
θ
−
2
d
ρ
d
θ
sin
θ
−
ρ
cos
θ
)
|
[
(
d
ρ
d
θ
cos
θ
−
ρ
sin
θ
)
2
+
(
d
ρ
d
θ
sin
θ
−
ρ
cos
θ
)
2
]
3
2
=
{\displaystyle ={\frac {|({\frac {d^{2}\rho }{d\theta ^{2}}}\sin \theta +2{\frac {d\rho }{d\theta }}\cos \theta -\rho \sin \theta )({\frac {d\rho }{d\theta }}\cos \theta -\rho \sin \theta )-({\frac {d\rho }{d\theta }}\sin \theta -\rho \cos \theta )({\frac {d^{2}\rho }{d\theta ^{2}}}\cos \theta -2{\frac {d\rho }{d\theta }}\sin \theta -\rho \cos \theta )|}{[({\frac {d\rho }{d\theta }}\cos \theta -\rho \sin \theta )^{2}+({\frac {d\rho }{d\theta }}\sin \theta -\rho \cos \theta )^{2}]^{3 \over 2}}}=}
=
(
d
2
ρ
d
θ
2
sin
θ
d
ρ
d
θ
cos
θ
+
2
d
ρ
d
θ
cos
θ
d
ρ
d
θ
cos
θ
−
ρ
sin
θ
d
ρ
d
θ
cos
θ
−
d
2
ρ
d
θ
2
sin
θ
ρ
sin
θ
−
2
d
ρ
d
θ
cos
θ
ρ
sin
θ
+
ρ
sin
θ
ρ
sin
θ
)
[
(
d
ρ
d
θ
cos
θ
−
ρ
sin
θ
)
2
+
(
d
ρ
d
θ
sin
θ
−
ρ
cos
θ
)
2
]
3
2
−
{\displaystyle ={\frac {({\frac {d^{2}\rho }{d\theta ^{2}}}\sin \theta {\frac {d\rho }{d\theta }}\cos \theta +2{\frac {d\rho }{d\theta }}\cos \theta {\frac {d\rho }{d\theta }}\cos \theta -\rho \sin \theta {\frac {d\rho }{d\theta }}\cos \theta -{\frac {d^{2}\rho }{d\theta ^{2}}}\sin \theta \rho \sin \theta -2{\frac {d\rho }{d\theta }}\cos \theta \rho \sin \theta +\rho \sin \theta \rho \sin \theta )}{[({\frac {d\rho }{d\theta }}\cos \theta -\rho \sin \theta )^{2}+({\frac {d\rho }{d\theta }}\sin \theta -\rho \cos \theta )^{2}]^{3 \over 2}}}-}
−
(
d
2
ρ
d
θ
2
cos
θ
d
ρ
d
θ
sin
θ
−
2
d
ρ
d
θ
sin
θ
d
ρ
d
θ
sin
θ
−
ρ
cos
θ
d
ρ
d
θ
sin
θ
−
d
2
ρ
d
θ
2
cos
θ
ρ
cos
θ
+
2
d
ρ
d
θ
sin
θ
ρ
cos
θ
+
ρ
cos
θ
ρ
cos
θ
)
[
(
d
ρ
d
θ
cos
θ
−
ρ
sin
θ
)
2
+
(
d
ρ
d
θ
sin
θ
−
ρ
cos
θ
)
2
]
3
2
=
{\displaystyle -{\frac {({\frac {d^{2}\rho }{d\theta ^{2}}}\cos \theta {\frac {d\rho }{d\theta }}\sin \theta -2{\frac {d\rho }{d\theta }}\sin \theta {\frac {d\rho }{d\theta }}\sin \theta -\rho \cos \theta {\frac {d\rho }{d\theta }}\sin \theta -{\frac {d^{2}\rho }{d\theta ^{2}}}\cos \theta \rho \cos \theta +2{\frac {d\rho }{d\theta }}\sin \theta \rho \cos \theta +\rho \cos \theta \rho \cos \theta )}{[({\frac {d\rho }{d\theta }}\cos \theta -\rho \sin \theta )^{2}+({\frac {d\rho }{d\theta }}\sin \theta -\rho \cos \theta )^{2}]^{3 \over 2}}}=}
=
d
2
ρ
d
θ
2
sin
θ
d
ρ
d
θ
cos
θ
+
2
d
ρ
d
θ
cos
θ
d
ρ
d
θ
cos
θ
−
ρ
sin
θ
d
ρ
d
θ
cos
θ
−
d
2
ρ
d
θ
2
sin
θ
ρ
sin
θ
−
2
d
ρ
d
θ
cos
θ
ρ
sin
θ
+
ρ
sin
θ
ρ
sin
θ
[
(
d
ρ
d
θ
cos
θ
−
ρ
sin
θ
)
2
+
(
d
ρ
d
θ
sin
θ
−
ρ
cos
θ
)
2
]
3
2
+
{\displaystyle ={\frac {{\frac {d^{2}\rho }{d\theta ^{2}}}\sin \theta {\frac {d\rho }{d\theta }}\cos \theta +2{\frac {d\rho }{d\theta }}\cos \theta {\frac {d\rho }{d\theta }}\cos \theta -\rho \sin \theta {\frac {d\rho }{d\theta }}\cos \theta -{\frac {d^{2}\rho }{d\theta ^{2}}}\sin \theta \rho \sin \theta -2{\frac {d\rho }{d\theta }}\cos \theta \rho \sin \theta +\rho \sin \theta \rho \sin \theta }{[({\frac {d\rho }{d\theta }}\cos \theta -\rho \sin \theta )^{2}+({\frac {d\rho }{d\theta }}\sin \theta -\rho \cos \theta )^{2}]^{3 \over 2}}}+}
+
−
d
2
ρ
d
θ
2
cos
θ
d
ρ
d
θ
sin
θ
+
2
d
ρ
d
θ
sin
θ
d
ρ
d
θ
sin
θ
+
ρ
cos
θ
d
ρ
d
θ
sin
θ
+
d
2
ρ
d
θ
2
cos
θ
ρ
cos
θ
−
2
d
ρ
d
θ
sin
θ
ρ
cos
θ
−
ρ
cos
θ
ρ
cos
θ
[
(
d
ρ
d
θ
cos
θ
−
ρ
sin
θ
)
2
+
(
d
ρ
d
θ
sin
θ
−
ρ
cos
θ
)
2
]
3
2
=
{\displaystyle +{\frac {-{\frac {d^{2}\rho }{d\theta ^{2}}}\cos \theta {\frac {d\rho }{d\theta }}\sin \theta +2{\frac {d\rho }{d\theta }}\sin \theta {\frac {d\rho }{d\theta }}\sin \theta +\rho \cos \theta {\frac {d\rho }{d\theta }}\sin \theta +{\frac {d^{2}\rho }{d\theta ^{2}}}\cos \theta \rho \cos \theta -2{\frac {d\rho }{d\theta }}\sin \theta \rho \cos \theta -\rho \cos \theta \rho \cos \theta }{[({\frac {d\rho }{d\theta }}\cos \theta -\rho \sin \theta )^{2}+({\frac {d\rho }{d\theta }}\sin \theta -\rho \cos \theta )^{2}]^{3 \over 2}}}=}
=
ρ
2
sin
2
θ
[
(
d
ρ
d
θ
cos
θ
−
ρ
sin
θ
)
2
+
(
d
ρ
d
θ
sin
θ
−
ρ
cos
θ
)
2
]
3
2
+
{\displaystyle ={\frac {\rho ^{2}\sin ^{2}\theta }{[({\frac {d\rho }{d\theta }}\cos \theta -\rho \sin \theta )^{2}+({\frac {d\rho }{d\theta }}\sin \theta -\rho \cos \theta )^{2}]^{3 \over 2}}}+}
+
−
ρ
2
cos
2
θ
[
(
d
ρ
d
θ
cos
θ
−
ρ
sin
θ
)
2
+
(
d
ρ
d
θ
sin
θ
−
ρ
cos
θ
)
2
]
3
2
=
|
ρ
2
sin
2
θ
−
ρ
2
cos
2
θ
|
[
(
d
ρ
d
θ
cos
θ
−
ρ
sin
θ
)
2
+
(
d
ρ
d
θ
sin
θ
−
ρ
cos
θ
)
2
]
3
2
=
{\displaystyle +{\frac {-\rho ^{2}\cos ^{2}\theta }{[({\frac {d\rho }{d\theta }}\cos \theta -\rho \sin \theta )^{2}+({\frac {d\rho }{d\theta }}\sin \theta -\rho \cos \theta )^{2}]^{3 \over 2}}}={\frac {|\rho ^{2}\sin ^{2}\theta -\rho ^{2}\cos ^{2}\theta |}{[({\frac {d\rho }{d\theta }}\cos \theta -\rho \sin \theta )^{2}+({\frac {d\rho }{d\theta }}\sin \theta -\rho \cos \theta )^{2}]^{3 \over 2}}}=}
=
|
ρ
2
sin
2
θ
−
ρ
2
cos
2
θ
|
[
(
(
d
ρ
d
θ
)
2
cos
2
θ
−
2
d
ρ
d
θ
cos
θ
(
−
ρ
sin
θ
)
+
ρ
2
sin
2
θ
)
+
(
(
d
ρ
d
θ
)
2
sin
2
θ
+
2
d
ρ
d
θ
sin
θ
ρ
cos
θ
+
ρ
2
cos
2
θ
)
]
3
2
=
{\displaystyle ={\frac {|\rho ^{2}\sin ^{2}\theta -\rho ^{2}\cos ^{2}\theta |}{[(({\frac {d\rho }{d\theta }})^{2}\cos ^{2}\theta -2{\frac {d\rho }{d\theta }}\cos \theta (-\rho \sin \theta )+\rho ^{2}\sin ^{2}\theta )+(({\frac {d\rho }{d\theta }})^{2}\sin ^{2}\theta +2{\frac {d\rho }{d\theta }}\sin \theta \rho \cos \theta +\rho ^{2}\cos ^{2}\theta )]^{3 \over 2}}}=}
=
|
ρ
2
sin
2
θ
−
ρ
2
cos
2
θ
|
[
4
d
ρ
d
θ
cos
(
θ
)
ρ
sin
(
θ
)
]
3
2
=
|
−
ρ
2
(
cos
2
θ
−
sin
2
θ
)
|
ρ
ρ
[
4
d
ρ
d
θ
cos
(
θ
)
sin
(
θ
)
]
3
2
=
|
−
ρ
cos
(
2
θ
)
|
ρ
[
2
d
ρ
d
θ
sin
(
2
θ
)
]
3
2
=
|
−
ρ
cos
(
2
θ
)
|
[
2
d
ρ
d
θ
sin
(
2
θ
)
]
3
2
=
{\displaystyle ={\frac {|\rho ^{2}\sin ^{2}\theta -\rho ^{2}\cos ^{2}\theta |}{[4{\frac {d\rho }{d\theta }}\cos(\theta )\rho \sin(\theta )]^{3 \over 2}}}={\frac {|-\rho ^{2}(\cos ^{2}\theta -\sin ^{2}\theta )|}{\rho {\sqrt {\rho }}[4{\frac {d\rho }{d\theta }}\cos(\theta )\sin(\theta )]^{3 \over 2}}}={\frac {|-\rho \cos(2\theta )|}{{\sqrt {\rho }}[2{\frac {d\rho }{d\theta }}\sin(2\theta )]^{3 \over 2}}}={\frac {|-{\sqrt {\rho }}\cos(2\theta )|}{[2{\frac {d\rho }{d\theta }}\sin(2\theta )]^{3 \over 2}}}=}
=
|
−
ρ
cos
(
2
θ
)
|
2
d
ρ
d
θ
sin
(
2
θ
)
2
d
ρ
d
θ
sin
(
2
θ
)
.
{\displaystyle ={\frac {|-{\sqrt {\rho }}\cos(2\theta )|}{2{\frac {d\rho }{d\theta }}\sin(2\theta ){\sqrt {2{\frac {d\rho }{d\theta }}\sin(2\theta )}}}}.}
Originali (vadovėlio) formulė yra:
K
=
|
ρ
2
+
2
ρ
′
2
−
ρ
ρ
″
|
(
ρ
2
+
ρ
′
2
)
3
/
2
.
(
4
)
{\displaystyle K={\frac {|\rho ^{2}+2\rho '^{2}-\rho \rho ''|}{(\rho ^{2}+\rho '^{2})^{3/2}}}.\quad (4)}
Vaizdas:Kreivispav144.jpg 144 pav.
Nustatyti kreivį Archimedo spiralės
ρ
=
a
θ
(
a
>
0
)
{\displaystyle \rho =a\theta \;\;(a>0)}
laisvai pasirenkame taške (144 pav.).
Sprendimas .
d
ρ
d
θ
=
a
;
d
2
ρ
d
θ
2
=
0.
{\displaystyle {\frac {d\rho }{d\theta }}=a;\quad {\frac {d^{2}\rho }{d\theta ^{2}}}=0.}
Iš to seka,
K
=
|
ρ
2
+
2
ρ
′
2
−
ρ
ρ
″
|
(
ρ
2
+
ρ
′
2
)
3
/
2
=
|
a
2
θ
2
+
2
a
2
−
a
θ
⋅
0
|
(
a
2
θ
2
+
a
2
)
3
/
2
=
|
a
2
θ
2
+
2
a
2
|
a
3
(
θ
2
+
1
)
3
/
2
=
θ
2
+
2
a
(
θ
2
+
1
)
3
/
2
.
{\displaystyle K={\frac {|\rho ^{2}+2\rho '^{2}-\rho \rho ''|}{(\rho ^{2}+\rho '^{2})^{3/2}}}={\frac {|a^{2}\theta ^{2}+2a^{2}-a\theta \cdot 0|}{(a^{2}\theta ^{2}+a^{2})^{3/2}}}={\frac {|a^{2}\theta ^{2}+2a^{2}|}{a^{3}(\theta ^{2}+1)^{3/2}}}={\frac {\theta ^{2}+2}{a(\theta ^{2}+1)^{3/2}}}.}
Pastebėsime, kad su didelėmis reikšmėmis
θ
{\displaystyle \theta }
turi vietą apytikslės lygybės:
θ
2
+
2
θ
2
≈
1
,
θ
2
+
1
θ
2
≈
1
;
{\displaystyle {\frac {\theta ^{2}+2}{\theta ^{2}}}\approx 1,\;\;{\frac {\theta ^{2}+1}{\theta ^{2}}}\approx 1;}
todėl, pakeičiant praeitoje formulėje
θ
2
+
2
{\displaystyle \theta ^{2}+2}
į
θ
2
{\displaystyle \theta ^{2}}
ir
θ
2
+
1
{\displaystyle \theta ^{2}+1}
į
θ
2
,
{\displaystyle \theta ^{2},}
gauname apytikslę formulę (didelėms reikšmėms
θ
{\displaystyle \theta }
):
K
≈
1
a
θ
2
(
θ
2
)
3
/
2
=
1
a
θ
.
{\displaystyle K\approx {\frac {1}{a}}{\frac {\theta ^{2}}{(\theta ^{2})^{3/2}}}={\frac {1}{a\theta }}.}
Tokiu budu, su didelėmis reikšmėmis
θ
{\displaystyle \theta }
Archimedo spiralė turi apytiksliai tą patį kreivį, kaip ir apskritimas spindulio
a
θ
{\displaystyle a\theta }
.
Pavyzdžiui, jei
a
=
1
,
{\displaystyle a=1,}
θ
=
1
{\displaystyle \theta =1}
, tuomet:
K
=
|
ρ
2
+
2
ρ
′
2
−
ρ
ρ
″
|
(
ρ
2
+
ρ
′
2
)
3
/
2
=
θ
2
+
2
a
(
θ
2
+
1
)
3
/
2
=
1
2
+
2
1
⋅
(
1
2
+
1
)
3
/
2
=
3
2
3
/
2
=
3
8
=
3
2.828427125
=
1.060660172
;
{\displaystyle K={\frac {|\rho ^{2}+2\rho '^{2}-\rho \rho ''|}{(\rho ^{2}+\rho '^{2})^{3/2}}}={\frac {\theta ^{2}+2}{a(\theta ^{2}+1)^{3/2}}}={\frac {1^{2}+2}{1\cdot (1^{2}+1)^{3/2}}}={\frac {3}{2^{3/2}}}={\frac {3}{\sqrt {8}}}={\frac {3}{2.828427125}}=1.060660172;}
K
=
|
−
ρ
cos
(
2
θ
)
|
[
2
d
ρ
d
θ
sin
(
2
θ
)
]
3
2
=
|
−
a
θ
cos
(
2
θ
)
|
[
2
a
sin
(
2
θ
)
]
3
2
=
|
−
1
⋅
1
cos
(
2
⋅
1
)
|
[
2
⋅
1
sin
(
2
⋅
1
)
]
3
2
=
{\displaystyle K={\frac {|-{\sqrt {\rho }}\cos(2\theta )|}{[2{\frac {d\rho }{d\theta }}\sin(2\theta )]^{3 \over 2}}}={\frac {|-{\sqrt {a\theta }}\cos(2\theta )|}{[2a\sin(2\theta )]^{3 \over 2}}}={\frac {|-{\sqrt {1\cdot 1}}\cos(2\cdot 1)|}{[2\cdot 1\sin(2\cdot 1)]^{3 \over 2}}}=}
=
|
−
cos
(
2
)
|
[
2
sin
(
2
)
]
3
2
=
|
−
(
−
0.416146836
)
|
[
2
⋅
0.909297426
]
3
2
=
0.416146836
[
1.818594854
]
3
2
=
0.416146836
2.452471316
=
0.16968469.
{\displaystyle ={\frac {|-\cos(2)|}{[2\sin(2)]^{3 \over 2}}}={\frac {|-(-0.416146836)|}{[2\cdot 0.909297426]^{3 \over 2}}}={\frac {0.416146836}{[1.818594854]^{3 \over 2}}}={\frac {0.416146836}{2.452471316}}=0.16968469.}
Apskaičiavimas kreivio linijos, užrašytos lygtimi polinėse koordinatėse
keisti
Tegu kreivė užrašyta lygtimi pavidalo
ρ
=
f
(
θ
)
.
(
1
)
{\displaystyle \rho =f(\theta ).\quad (1)}
Užrašysime formules perėjimo iš polinių koordinačių į dekartines:
x
=
ρ
cos
θ
,
y
=
ρ
sin
θ
.
(
2
)
{\displaystyle x=\rho \cos \theta ,\quad y=\rho \sin \theta .\quad (2)}
Jeigu į šitas formules įstatyti vietoje
ρ
{\displaystyle \rho }
jo išraišką per
θ
,
{\displaystyle \theta ,}
t. y.
f
(
θ
)
,
{\displaystyle f(\theta ),\;}
tai gausime:
x
=
f
(
θ
)
cos
θ
,
y
=
f
(
θ
)
sin
θ
.
(
3
)
{\displaystyle x=f(\theta )\cos \theta ,\quad y=f(\theta )\sin \theta .\quad (3)}
Paskutines lygtis galima nagrinėti kaip parametrines lygtis kreivės (1), be kita ko parametras yra
θ
.
{\displaystyle \theta .}
Tada
d
y
d
x
=
d
y
d
θ
d
x
d
θ
,
{\displaystyle {\frac {dy}{dx}}={\frac {\frac {dy}{d\theta }}{\frac {dx}{d\theta }}},}
d
2
y
d
x
2
=
d
d
x
(
d
y
d
θ
d
x
d
θ
)
=
d
d
θ
(
d
y
d
θ
d
x
d
θ
)
d
θ
d
x
=
d
x
d
θ
d
d
θ
(
d
y
d
θ
)
−
d
y
d
θ
d
d
θ
(
d
x
d
θ
)
(
d
x
d
θ
)
2
d
θ
d
x
=
d
x
d
θ
d
2
y
d
θ
2
−
d
y
d
θ
d
2
x
d
θ
2
(
d
x
d
θ
)
2
d
θ
d
x
=
d
x
d
θ
d
2
y
d
θ
2
−
d
y
d
θ
d
2
x
d
θ
2
(
d
x
d
θ
)
2
1
d
x
d
θ
=
d
x
d
θ
d
2
y
d
θ
2
−
d
y
d
θ
d
2
x
d
θ
2
(
d
x
d
θ
)
3
.
{\displaystyle {\frac {d^{2}y}{dx^{2}}}={\frac {d}{dx}}\left({\frac {\frac {dy}{d\theta }}{\frac {dx}{d\theta }}}\right)={\frac {d}{d\theta }}\left({\frac {\frac {dy}{d\theta }}{\frac {dx}{d\theta }}}\right){\frac {d\theta }{dx}}={\frac {{\frac {dx}{d\theta }}{\frac {d}{d\theta }}({\frac {dy}{d\theta }})-{\frac {dy}{d\theta }}{\frac {d}{d\theta }}({\frac {dx}{d\theta }})}{({\frac {dx}{d\theta }})^{2}}}{\frac {d\theta }{dx}}={\frac {{\frac {dx}{d\theta }}{\frac {d^{2}y}{d\theta ^{2}}}-{\frac {dy}{d\theta }}{\frac {d^{2}x}{d\theta ^{2}}}}{({\frac {dx}{d\theta }})^{2}}}{\frac {d\theta }{dx}}={\frac {{\frac {dx}{d\theta }}{\frac {d^{2}y}{d\theta ^{2}}}-{\frac {dy}{d\theta }}{\frac {d^{2}x}{d\theta ^{2}}}}{({\frac {dx}{d\theta }})^{2}}}{\frac {1}{\frac {dx}{d\theta }}}={\frac {{\frac {dx}{d\theta }}{\frac {d^{2}y}{d\theta ^{2}}}-{\frac {dy}{d\theta }}{\frac {d^{2}x}{d\theta ^{2}}}}{({\frac {dx}{d\theta }})^{3}}}.}
d
x
d
θ
=
d
ρ
d
θ
cos
θ
−
ρ
sin
θ
,
d
y
d
θ
=
d
ρ
d
θ
sin
θ
+
ρ
cos
θ
,
{\displaystyle {\frac {dx}{d\theta }}={\frac {d\rho }{d\theta }}\cos \theta -\rho \sin \theta ,\quad {\frac {dy}{d\theta }}={\frac {d\rho }{d\theta }}\sin \theta +\rho \cos \theta ,}
d
2
x
d
θ
2
=
(
d
2
ρ
d
θ
2
cos
θ
−
d
ρ
d
θ
sin
θ
)
−
(
d
ρ
d
θ
sin
θ
+
ρ
cos
θ
)
=
d
2
ρ
d
θ
2
cos
θ
−
2
d
ρ
d
θ
sin
θ
−
ρ
cos
θ
,
{\displaystyle {\frac {d^{2}x}{d\theta ^{2}}}=({\frac {d^{2}\rho }{d\theta ^{2}}}\cos \theta -{\frac {d\rho }{d\theta }}\sin \theta )-({\frac {d\rho }{d\theta }}\sin \theta +\rho \cos \theta )={\frac {d^{2}\rho }{d\theta ^{2}}}\cos \theta -2{\frac {d\rho }{d\theta }}\sin \theta -\rho \cos \theta ,}
d
2
y
d
θ
2
=
(
d
2
ρ
d
θ
2
sin
θ
+
d
ρ
d
θ
cos
θ
)
+
(
d
ρ
d
θ
cos
θ
−
ρ
sin
θ
)
=
d
2
ρ
d
θ
2
sin
θ
+
2
d
ρ
d
θ
cos
θ
−
ρ
sin
θ
.
{\displaystyle {\frac {d^{2}y}{d\theta ^{2}}}=({\frac {d^{2}\rho }{d\theta ^{2}}}\sin \theta +{\frac {d\rho }{d\theta }}\cos \theta )+({\frac {d\rho }{d\theta }}\cos \theta -\rho \sin \theta )={\frac {d^{2}\rho }{d\theta ^{2}}}\sin \theta +2{\frac {d\rho }{d\theta }}\cos \theta -\rho \sin \theta .}
Įstatant paskutinę išraišką į formulę (1) praeito skyriaus, gausime formulę apskaičiavimui kreivio kreivės polinėse koordinatėse:
K
=
|
d
2
y
d
x
2
|
[
1
+
(
d
y
d
x
)
2
]
3
2
=
|
ψ
″
ϕ
′
−
ψ
′
ϕ
″
(
ϕ
′
)
3
|
[
1
+
(
ψ
′
ϕ
′
)
2
]
3
2
=
|
ψ
″
ϕ
′
−
ψ
′
ϕ
″
|
(
ϕ
′
)
3
[
1
(
ϕ
′
)
2
(
(
ϕ
′
)
2
+
(
ψ
′
)
2
)
]
3
2
=
|
ψ
″
ϕ
′
−
ψ
′
ϕ
″
|
(
ϕ
′
)
3
⋅
(
1
(
ϕ
′
)
2
)
3
/
2
[
(
ϕ
′
)
2
+
(
ψ
′
)
2
]
3
2
=
{\displaystyle K={\frac {\left|{\frac {d^{2}y}{dx^{2}}}\right|}{\left[1+\left({\frac {dy}{dx}}\right)^{2}\right]^{3 \over 2}}}={\frac {\left|{\frac {\psi ''\phi '-\psi '\phi ''}{(\phi ')^{3}}}\right|}{\left[1+\left({\frac {\psi '}{\phi '}}\right)^{2}\right]^{3 \over 2}}}={\frac {\left|\psi ''\phi '-\psi '\phi ''\right|}{(\phi ')^{3}\left[{\frac {1}{(\phi ')^{2}}}((\phi ')^{2}+(\psi ')^{2})\right]^{3 \over 2}}}={\frac {\left|\psi ''\phi '-\psi '\phi ''\right|}{(\phi ')^{3}\cdot ({\frac {1}{(\phi ')^{2}}})^{3/2}\left[(\phi ')^{2}+(\psi ')^{2}\right]^{3 \over 2}}}=}
=
|
ψ
″
ϕ
′
−
ψ
′
ϕ
″
|
[
ϕ
′
2
+
ψ
′
2
]
3
2
=
|
d
2
y
d
θ
2
d
x
d
θ
−
d
y
d
θ
d
2
x
d
θ
2
|
[
(
d
x
d
θ
)
2
+
(
d
y
d
θ
)
2
]
3
2
=
{\displaystyle ={\frac {|\psi ''\phi '-\psi '\phi ''|}{[\phi '^{2}+\psi '^{2}]^{3 \over 2}}}={\frac {\left|{\frac {d^{2}y}{d\theta ^{2}}}{\frac {dx}{d\theta }}-{\frac {dy}{d\theta }}{\frac {d^{2}x}{d\theta ^{2}}}\right|}{\left[\left({\frac {dx}{d\theta }}\right)^{2}+\left({\frac {dy}{d\theta }}\right)^{2}\right]^{3 \over 2}}}=}
=
|
(
d
2
ρ
d
θ
2
sin
θ
+
2
d
ρ
d
θ
cos
θ
−
ρ
sin
θ
)
(
d
ρ
d
θ
cos
θ
−
ρ
sin
θ
)
−
(
d
ρ
d
θ
sin
θ
+
ρ
cos
θ
)
(
d
2
ρ
d
θ
2
cos
θ
−
2
d
ρ
d
θ
sin
θ
−
ρ
cos
θ
)
|
[
(
d
ρ
d
θ
cos
θ
−
ρ
sin
θ
)
2
+
(
d
ρ
d
θ
sin
θ
+
ρ
cos
θ
)
2
]
3
2
=
{\displaystyle ={\frac {|({\frac {d^{2}\rho }{d\theta ^{2}}}\sin \theta +2{\frac {d\rho }{d\theta }}\cos \theta -\rho \sin \theta )({\frac {d\rho }{d\theta }}\cos \theta -\rho \sin \theta )-({\frac {d\rho }{d\theta }}\sin \theta +\rho \cos \theta )({\frac {d^{2}\rho }{d\theta ^{2}}}\cos \theta -2{\frac {d\rho }{d\theta }}\sin \theta -\rho \cos \theta )|}{[({\frac {d\rho }{d\theta }}\cos \theta -\rho \sin \theta )^{2}+({\frac {d\rho }{d\theta }}\sin \theta +\rho \cos \theta )^{2}]^{3 \over 2}}}=}
=
(
d
2
ρ
d
θ
2
sin
θ
d
ρ
d
θ
cos
θ
+
2
d
ρ
d
θ
cos
θ
d
ρ
d
θ
cos
θ
−
ρ
sin
θ
d
ρ
d
θ
cos
θ
−
d
2
ρ
d
θ
2
sin
θ
ρ
sin
θ
−
2
d
ρ
d
θ
cos
θ
ρ
sin
θ
+
ρ
sin
θ
ρ
sin
θ
)
[
(
d
ρ
d
θ
cos
θ
−
ρ
sin
θ
)
2
+
(
d
ρ
d
θ
sin
θ
+
ρ
cos
θ
)
2
]
3
2
−
{\displaystyle ={\frac {({\frac {d^{2}\rho }{d\theta ^{2}}}\sin \theta {\frac {d\rho }{d\theta }}\cos \theta +2{\frac {d\rho }{d\theta }}\cos \theta {\frac {d\rho }{d\theta }}\cos \theta -\rho \sin \theta {\frac {d\rho }{d\theta }}\cos \theta -{\frac {d^{2}\rho }{d\theta ^{2}}}\sin \theta \rho \sin \theta -2{\frac {d\rho }{d\theta }}\cos \theta \rho \sin \theta +\rho \sin \theta \rho \sin \theta )}{[({\frac {d\rho }{d\theta }}\cos \theta -\rho \sin \theta )^{2}+({\frac {d\rho }{d\theta }}\sin \theta +\rho \cos \theta )^{2}]^{3 \over 2}}}-}
−
(
d
2
ρ
d
θ
2
cos
θ
d
ρ
d
θ
sin
θ
−
2
d
ρ
d
θ
sin
θ
d
ρ
d
θ
sin
θ
−
ρ
cos
θ
d
ρ
d
θ
sin
θ
+
d
2
ρ
d
θ
2
cos
θ
ρ
cos
θ
−
2
d
ρ
d
θ
sin
θ
ρ
cos
θ
−
ρ
cos
θ
ρ
cos
θ
)
[
(
d
ρ
d
θ
cos
θ
−
ρ
sin
θ
)
2
+
(
d
ρ
d
θ
sin
θ
+
ρ
cos
θ
)
2
]
3
2
=
{\displaystyle -{\frac {({\frac {d^{2}\rho }{d\theta ^{2}}}\cos \theta {\frac {d\rho }{d\theta }}\sin \theta -2{\frac {d\rho }{d\theta }}\sin \theta {\frac {d\rho }{d\theta }}\sin \theta -\rho \cos \theta {\frac {d\rho }{d\theta }}\sin \theta +{\frac {d^{2}\rho }{d\theta ^{2}}}\cos \theta \rho \cos \theta -2{\frac {d\rho }{d\theta }}\sin \theta \rho \cos \theta -\rho \cos \theta \rho \cos \theta )}{[({\frac {d\rho }{d\theta }}\cos \theta -\rho \sin \theta )^{2}+({\frac {d\rho }{d\theta }}\sin \theta +\rho \cos \theta )^{2}]^{3 \over 2}}}=}
=
d
2
ρ
d
θ
2
sin
θ
d
ρ
d
θ
cos
θ
+
2
d
ρ
d
θ
cos
θ
d
ρ
d
θ
cos
θ
−
ρ
sin
θ
d
ρ
d
θ
cos
θ
−
d
2
ρ
d
θ
2
sin
θ
ρ
sin
θ
−
2
d
ρ
d
θ
cos
θ
ρ
sin
θ
+
ρ
sin
θ
ρ
sin
θ
[
(
d
ρ
d
θ
cos
θ
−
ρ
sin
θ
)
2
+
(
d
ρ
d
θ
sin
θ
+
ρ
cos
θ
)
2
]
3
2
+
{\displaystyle ={\frac {{\frac {d^{2}\rho }{d\theta ^{2}}}\sin \theta {\frac {d\rho }{d\theta }}\cos \theta +2{\frac {d\rho }{d\theta }}\cos \theta {\frac {d\rho }{d\theta }}\cos \theta -\rho \sin \theta {\frac {d\rho }{d\theta }}\cos \theta -{\frac {d^{2}\rho }{d\theta ^{2}}}\sin \theta \rho \sin \theta -2{\frac {d\rho }{d\theta }}\cos \theta \rho \sin \theta +\rho \sin \theta \rho \sin \theta }{[({\frac {d\rho }{d\theta }}\cos \theta -\rho \sin \theta )^{2}+({\frac {d\rho }{d\theta }}\sin \theta +\rho \cos \theta )^{2}]^{3 \over 2}}}+}
+
−
d
2
ρ
d
θ
2
cos
θ
d
ρ
d
θ
sin
θ
+
2
d
ρ
d
θ
sin
θ
d
ρ
d
θ
sin
θ
+
ρ
cos
θ
d
ρ
d
θ
sin
θ
−
d
2
ρ
d
θ
2
cos
θ
ρ
cos
θ
+
2
d
ρ
d
θ
sin
θ
ρ
cos
θ
+
ρ
cos
θ
ρ
cos
θ
[
(
d
ρ
d
θ
cos
θ
−
ρ
sin
θ
)
2
+
(
d
ρ
d
θ
sin
θ
+
ρ
cos
θ
)
2
]
3
2
=
{\displaystyle +{\frac {-{\frac {d^{2}\rho }{d\theta ^{2}}}\cos \theta {\frac {d\rho }{d\theta }}\sin \theta +2{\frac {d\rho }{d\theta }}\sin \theta {\frac {d\rho }{d\theta }}\sin \theta +\rho \cos \theta {\frac {d\rho }{d\theta }}\sin \theta -{\frac {d^{2}\rho }{d\theta ^{2}}}\cos \theta \rho \cos \theta +2{\frac {d\rho }{d\theta }}\sin \theta \rho \cos \theta +\rho \cos \theta \rho \cos \theta }{[({\frac {d\rho }{d\theta }}\cos \theta -\rho \sin \theta )^{2}+({\frac {d\rho }{d\theta }}\sin \theta +\rho \cos \theta )^{2}]^{3 \over 2}}}=}
=
2
d
ρ
d
θ
cos
θ
d
ρ
d
θ
cos
θ
−
d
2
ρ
d
θ
2
sin
θ
ρ
sin
θ
+
ρ
sin
θ
ρ
sin
θ
[
(
d
ρ
d
θ
cos
θ
−
ρ
sin
θ
)
2
+
(
d
ρ
d
θ
sin
θ
+
ρ
cos
θ
)
2
]
3
2
+
{\displaystyle ={\frac {2{\frac {d\rho }{d\theta }}\cos \theta {\frac {d\rho }{d\theta }}\cos \theta -{\frac {d^{2}\rho }{d\theta ^{2}}}\sin \theta \rho \sin \theta +\rho \sin \theta \rho \sin \theta }{[({\frac {d\rho }{d\theta }}\cos \theta -\rho \sin \theta )^{2}+({\frac {d\rho }{d\theta }}\sin \theta +\rho \cos \theta )^{2}]^{3 \over 2}}}+}
+
2
d
ρ
d
θ
sin
θ
d
ρ
d
θ
sin
θ
−
d
2
ρ
d
θ
2
cos
θ
ρ
cos
θ
+
ρ
cos
θ
ρ
cos
θ
[
(
d
ρ
d
θ
cos
θ
−
ρ
sin
θ
)
2
+
(
d
ρ
d
θ
sin
θ
+
ρ
cos
θ
)
2
]
3
2
=
{\displaystyle +{\frac {2{\frac {d\rho }{d\theta }}\sin \theta {\frac {d\rho }{d\theta }}\sin \theta -{\frac {d^{2}\rho }{d\theta ^{2}}}\cos \theta \rho \cos \theta +\rho \cos \theta \rho \cos \theta }{[({\frac {d\rho }{d\theta }}\cos \theta -\rho \sin \theta )^{2}+({\frac {d\rho }{d\theta }}\sin \theta +\rho \cos \theta )^{2}]^{3 \over 2}}}=}
=
|
2
(
d
ρ
d
θ
)
2
cos
2
θ
+
2
(
d
ρ
d
θ
)
2
sin
2
θ
−
ρ
d
2
ρ
d
θ
2
sin
2
θ
−
ρ
d
2
ρ
d
θ
2
cos
2
θ
+
ρ
2
sin
2
θ
+
ρ
2
cos
2
θ
|
[
(
d
ρ
d
θ
cos
θ
−
ρ
sin
θ
)
2
+
(
d
ρ
d
θ
sin
θ
+
ρ
cos
θ
)
2
]
3
2
=
{\displaystyle ={\frac {|2({\frac {d\rho }{d\theta }})^{2}\cos ^{2}\theta +2({\frac {d\rho }{d\theta }})^{2}\sin ^{2}\theta -\rho {\frac {d^{2}\rho }{d\theta ^{2}}}\sin ^{2}\theta -\rho {\frac {d^{2}\rho }{d\theta ^{2}}}\cos ^{2}\theta +\rho ^{2}\sin ^{2}\theta +\rho ^{2}\cos ^{2}\theta |}{[({\frac {d\rho }{d\theta }}\cos \theta -\rho \sin \theta )^{2}+({\frac {d\rho }{d\theta }}\sin \theta +\rho \cos \theta )^{2}]^{3 \over 2}}}=}
=
|
2
(
d
ρ
d
θ
)
2
−
ρ
d
2
ρ
d
θ
2
+
ρ
2
|
[
(
d
ρ
d
θ
cos
θ
−
ρ
sin
θ
)
2
+
(
d
ρ
d
θ
sin
θ
+
ρ
cos
θ
)
2
]
3
2
=
{\displaystyle ={\frac {|2({\frac {d\rho }{d\theta }})^{2}-\rho {\frac {d^{2}\rho }{d\theta ^{2}}}+\rho ^{2}|}{[({\frac {d\rho }{d\theta }}\cos \theta -\rho \sin \theta )^{2}+({\frac {d\rho }{d\theta }}\sin \theta +\rho \cos \theta )^{2}]^{3 \over 2}}}=}
=
|
ρ
2
+
2
(
d
ρ
d
θ
)
2
−
ρ
d
2
ρ
d
θ
2
|
[
(
(
d
ρ
d
θ
)
2
cos
2
θ
−
2
d
ρ
d
θ
cos
(
θ
)
ρ
sin
(
θ
)
+
ρ
2
sin
2
θ
)
+
(
(
d
ρ
d
θ
)
2
sin
2
θ
+
2
d
ρ
d
θ
sin
(
θ
)
ρ
cos
(
θ
)
+
ρ
2
cos
2
θ
)
]
3
2
=
{\displaystyle ={\frac {|\rho ^{2}+2({\frac {d\rho }{d\theta }})^{2}-\rho {\frac {d^{2}\rho }{d\theta ^{2}}}|}{[(({\frac {d\rho }{d\theta }})^{2}\cos ^{2}\theta -2{\frac {d\rho }{d\theta }}\cos(\theta )\rho \sin(\theta )+\rho ^{2}\sin ^{2}\theta )+(({\frac {d\rho }{d\theta }})^{2}\sin ^{2}\theta +2{\frac {d\rho }{d\theta }}\sin(\theta )\rho \cos(\theta )+\rho ^{2}\cos ^{2}\theta )]^{3 \over 2}}}=}
=
|
ρ
2
+
2
(
d
ρ
d
θ
)
2
−
ρ
d
2
ρ
d
θ
2
|
[
(
d
ρ
d
θ
)
2
cos
2
θ
+
(
d
ρ
d
θ
)
2
sin
2
θ
+
ρ
2
sin
2
θ
+
ρ
2
cos
2
θ
)
]
3
2
=
|
ρ
2
+
2
(
d
ρ
d
θ
)
2
−
ρ
d
2
ρ
d
θ
2
|
[
(
d
ρ
d
θ
)
2
+
ρ
2
]
3
2
=
|
ρ
2
+
2
ρ
′
2
−
ρ
ρ
″
|
(
ρ
2
+
ρ
′
2
)
3
/
2
.
{\displaystyle ={\frac {|\rho ^{2}+2({\frac {d\rho }{d\theta }})^{2}-\rho {\frac {d^{2}\rho }{d\theta ^{2}}}|}{[({\frac {d\rho }{d\theta }})^{2}\cos ^{2}\theta +({\frac {d\rho }{d\theta }})^{2}\sin ^{2}\theta +\rho ^{2}\sin ^{2}\theta +\rho ^{2}\cos ^{2}\theta )]^{3 \over 2}}}={\frac {|\rho ^{2}+2({\frac {d\rho }{d\theta }})^{2}-\rho {\frac {d^{2}\rho }{d\theta ^{2}}}|}{[({\frac {d\rho }{d\theta }})^{2}+\rho ^{2}]^{3 \over 2}}}={\frac {|\rho ^{2}+2\rho '^{2}-\rho \rho ''|}{(\rho ^{2}+\rho '^{2})^{3/2}}}.}
Originali (vadovėlio) formulė yra:
K
=
|
ρ
2
+
2
ρ
′
2
−
ρ
ρ
″
|
(
ρ
2
+
ρ
′
2
)
3
/
2
.
(
4
)
{\displaystyle K={\frac {|\rho ^{2}+2\rho '^{2}-\rho \rho ''|}{(\rho ^{2}+\rho '^{2})^{3/2}}}.\quad (4)}
d
y
d
x
=
(
2
x
)
′
=
1
2
⋅
(
2
x
)
′
2
x
=
1
2
x
;
{\displaystyle {\frac {dy}{dx}}=({\sqrt {2x}})'={\frac {1}{2}}\cdot {\frac {(2x)'}{\sqrt {2x}}}={\frac {1}{\sqrt {2x}}};}
L
=
∫
a
b
1
+
(
y
′
)
2
d
x
=
∫
1
7
1
+
(
1
2
x
)
2
d
x
=
∫
1
7
1
+
1
2
x
d
x
=
{\displaystyle L=\int _{a}^{b}{\sqrt {1+(y')^{2}}}dx=\int _{1}^{7}{\sqrt {1+\left({\frac {1}{\sqrt {2x}}}\right)^{2}}}dx=\int _{1}^{7}{\sqrt {1+{\frac {1}{2x}}}}dx=}
=
[
x
1
2
x
+
1
+
1
4
ln
(
2
2
x
1
x
+
2
+
4
x
+
2
)
]
|
1
7
=
{\displaystyle =\left[x{\sqrt {{\frac {1}{2x}}+1}}+{\frac {1}{4}}\ln \left(2{\sqrt {2}}x{\sqrt {{\frac {1}{x}}+2}}+4x+2\right)\right]|_{1}^{7}=}
=
[
x
1
2
x
+
1
+
1
4
ln
(
4
x
1
2
x
+
1
+
4
x
+
2
)
]
|
1
7
=
{\displaystyle =\left[x{\sqrt {{\frac {1}{2x}}+1}}+{\frac {1}{4}}\ln \left(4x{\sqrt {{\frac {1}{2x}}+1}}+4x+2\right)\right]|_{1}^{7}=}
=
[
7
1
2
⋅
7
+
1
+
1
4
ln
(
4
⋅
7
⋅
1
2
⋅
7
+
1
+
4
⋅
7
+
2
)
]
−
[
1
2
+
1
+
1
4
ln
(
4
1
2
+
1
+
4
+
2
)
]
=
{\displaystyle =\left[7{\sqrt {{\frac {1}{2\cdot 7}}+1}}+{\frac {1}{4}}\ln \left(4\cdot 7\cdot {\sqrt {{\frac {1}{2\cdot 7}}+1}}+4\cdot 7+2\right)\right]-\left[{\sqrt {{\frac {1}{2}}+1}}+{\frac {1}{4}}\ln \left(4{\sqrt {{\frac {1}{2}}+1}}+4+2\right)\right]=}
=
[
7
1
14
+
1
+
1
4
ln
(
28
⋅
1
14
+
1
+
28
+
2
)
]
−
[
1.5
+
1
4
ln
(
4
1.5
+
6
)
]
=
{\displaystyle =\left[7{\sqrt {{\frac {1}{14}}+1}}+{\frac {1}{4}}\ln \left(28\cdot {\sqrt {{\frac {1}{14}}+1}}+28+2\right)\right]-\left[{\sqrt {1.5}}+{\frac {1}{4}}\ln(4{\sqrt {1.5}}+6)\right]=}
=
[
7
15
14
+
1
4
ln
(
28
⋅
15
14
+
30
)
]
−
[
1.224744871
+
1
4
ln
(
4.898979486
+
6
)
]
=
{\displaystyle =\left[7{\sqrt {\frac {15}{14}}}+{\frac {1}{4}}\ln \left(28\cdot {\sqrt {\frac {15}{14}}}+30\right)\right]-\left[1.224744871+{\frac {1}{4}}\ln(4.898979486+6)\right]=}
=
7
1.071428571
+
1
4
ln
(
28
⋅
1.071428571
+
30
)
−
[
1.224744871
+
2.38866916
4
]
=
{\displaystyle =7{\sqrt {1.071428571}}+{\frac {1}{4}}\ln \left(28\cdot {\sqrt {1.071428571}}+30\right)-\left[1.224744871+{\frac {2.38866916}{4}}\right]=}
=
7
⋅
1.035098339
+
1
4
ln
(
28
⋅
1.035098339
+
30
)
−
[
1.224744871
+
0.597167289
]
=
{\displaystyle =7\cdot 1.035098339+{\frac {1}{4}}\ln(28\cdot 1.035098339+30)-[1.224744871+0.597167289]=}
=
7.245688373
+
ln
(
28.98275349
+
30
)
4
−
1.821912161
=
{\displaystyle =7.245688373+{\frac {\ln(28.98275349+30)}{4}}-1.821912161=}
=
7.245688373
+
4.077245087
4
−
1.821912161
=
{\displaystyle =7.245688373+{\frac {4.077245087}{4}}-1.821912161=}
=
7.245688373
+
1.019311272
−
1.821912161
=
6.443087484.
{\displaystyle =7.245688373+1.019311272-1.821912161=6.443087484.}
Pasinaudojome internetiniu integratoriumi http://integrals.wolfram.com/index.jsp?expr=Sqrt%5B1%2B+1%2F%282x%29%5D+&random=false .
Nustatyti kreivį parabolės
y
=
x
2
{\displaystyle y=x^{2}}
taškuose
x
0
=
0
{\displaystyle x_{0}=0}
ir
x
1
=
5.
{\displaystyle x_{1}=5.}
Rasti prabolės evoliutės lanko ilgį iš taško
C
0
(
x
2
;
y
2
)
{\displaystyle C_{0}(x_{2};\;y_{2})}
iki taško
C
1
(
x
3
;
y
3
)
{\displaystyle C_{1}(x_{3};\;y_{3})}
naudojantis kreivės lanko ilgio skaičiavimo formule
L
=
∫
a
b
1
+
(
y
′
)
2
d
x
.
{\displaystyle L=\int _{a}^{b}{\sqrt {1+(y')^{2}}}dx.}
Taškas
C
0
{\displaystyle C_{0}}
yra spindulio
R
0
{\displaystyle R_{0}}
centras, o taškas
C
1
{\displaystyle C_{1}}
yra spindulio
R
2
{\displaystyle R_{2}}
centras. Spindulys
R
0
{\displaystyle R_{0}}
yra atkarpa iš taško
M
0
(
x
0
;
y
0
)
{\displaystyle M_{0}(x_{0};y_{0})}
iki taško
C
0
(
x
2
;
y
2
)
{\displaystyle C_{0}(x_{2};y_{2})}
. Spindulys
R
1
{\displaystyle R_{1}}
yra atkarpa iš taško
M
1
(
x
1
;
y
1
)
{\displaystyle M_{1}(x_{1};y_{1})}
iki taško
C
1
(
x
3
;
y
3
)
{\displaystyle C_{1}(x_{3};y_{3})}
.
Sprendimas .
y
′
=
(
x
2
)
′
=
2
x
,
y
″
=
(
2
x
)
′
=
2.
{\displaystyle y'=(x^{2})'=2x,\quad y''=(2x)'=2.}
K
=
|
d
2
y
d
x
2
|
[
1
+
(
d
y
d
x
)
2
]
3
2
=
|
2
|
[
1
+
(
2
x
)
2
]
3
2
=
2
(
1
+
4
x
2
)
3
2
.
{\displaystyle K={\frac {\left|{\frac {d^{2}y}{dx^{2}}}\right|}{\left[1+\left({\frac {dy}{dx}}\right)^{2}\right]^{3 \over 2}}}={\frac {|2|}{[1+(2x)^{2}]^{3 \over 2}}}={\frac {2}{(1+4x^{2})^{3 \over 2}}}.}
Kreivis taške
M
0
{\displaystyle M_{0}}
yra lygus:
K
M
0
=
|
d
2
y
d
x
2
|
[
1
+
(
d
y
d
x
)
2
]
3
2
=
|
2
|
[
1
+
(
2
x
)
2
]
3
2
=
2
(
1
+
4
x
2
)
3
2
=
2
(
1
+
4
⋅
0
2
)
3
2
=
2.
{\displaystyle K_{M_{0}}={\frac {\left|{\frac {d^{2}y}{dx^{2}}}\right|}{\left[1+\left({\frac {dy}{dx}}\right)^{2}\right]^{3 \over 2}}}={\frac {|2|}{[1+(2x)^{2}]^{3 \over 2}}}={\frac {2}{(1+4x^{2})^{3 \over 2}}}={\frac {2}{(1+4\cdot 0^{2})^{3 \over 2}}}=2.}
R
0
=
1
K
M
0
=
1
2
=
0.5.
{\displaystyle R_{0}={\frac {1}{K_{M_{0}}}}={\frac {1}{2}}=0.5.}
Kreivis taške
M
1
{\displaystyle M_{1}}
yra lygus:
K
M
1
=
|
d
2
y
d
x
2
|
[
1
+
(
d
y
d
x
)
2
]
3
2
=
|
2
|
[
1
+
(
2
x
)
2
]
3
2
=
2
(
1
+
4
x
2
)
3
2
=
{\displaystyle K_{M_{1}}={\frac {\left|{\frac {d^{2}y}{dx^{2}}}\right|}{\left[1+\left({\frac {dy}{dx}}\right)^{2}\right]^{3 \over 2}}}={\frac {|2|}{[1+(2x)^{2}]^{3 \over 2}}}={\frac {2}{(1+4x^{2})^{3 \over 2}}}=}
=
2
(
1
+
4
⋅
5
2
)
3
2
=
2
101
3
2
=
2
1030301
=
2
1015.037438
=
0.00197037.
{\displaystyle ={\frac {2}{(1+4\cdot 5^{2})^{3 \over 2}}}={\frac {2}{101^{3 \over 2}}}={\frac {2}{\sqrt {1030301}}}={\frac {2}{1015.037438}}=0.00197037.}
R
1
=
1
K
M
1
=
1
2
1030301
=
1030301
2
=
507.5187189.
{\displaystyle R_{1}={\frac {1}{K_{M_{1}}}}={\frac {1}{\frac {2}{\sqrt {1030301}}}}={\frac {\sqrt {1030301}}{2}}=507.5187189.}
Dabar užrašysime parabolės normalės lygtį taške
M
1
(
5
;
25
)
{\displaystyle M_{1}(5;25)}
:
y
−
y
M
1
=
−
1
y
′
(
x
−
x
M
1
)
,
{\displaystyle y-y_{M_{1}}=-{\frac {1}{y'}}(x-x_{M_{1}}),}
y
−
25
=
−
1
2
x
(
x
−
5
)
,
{\displaystyle y-25=-{\frac {1}{2x}}(x-5),}
y
=
−
1
2
+
5
2
x
+
25
=
2.5
x
+
24.5.
{\displaystyle y=-{\frac {1}{2}}+{\frac {5}{2x}}+25=2.5x+24.5.}
Toliau rasime spindulio
R
1
=
1030301
2
{\displaystyle R_{1}={\frac {\sqrt {1030301}}{2}}}
centro
C
1
(
x
3
;
y
3
)
{\displaystyle C_{1}(x_{3};\;y_{3})}
koordinates. Žinome, kad
(
x
3
−
x
1
)
2
+
(
y
3
−
y
1
)
2
=
R
1
2
,
{\displaystyle (x_{3}-x_{1})^{2}+(y_{3}-y_{1})^{2}=R_{1}^{2},}
(
x
3
−
5
)
2
+
(
y
3
−
25
)
2
=
R
1
,
{\displaystyle {\sqrt {(x_{3}-5)^{2}+(y_{3}-25)^{2}}}=R_{1},}
(
x
3
−
5
)
2
+
(
y
3
−
25
)
2
=
(
1030301
2
)
2
,
{\displaystyle (x_{3}-5)^{2}+(y_{3}-25)^{2}=\left({\frac {\sqrt {1030301}}{2}}\right)^{2},}
(
x
3
−
5
)
2
+
(
y
3
−
25
)
2
=
1030301
4
=
257575.25.
{\displaystyle (x_{3}-5)^{2}+(y_{3}-25)^{2}={\frac {1030301}{4}}=257575.25.}
Išsprendę lygčių sistemą rasime
x
3
{\displaystyle x_{3}}
taško
C
1
{\displaystyle C_{1}}
koordinatę:
{
y
−
25
=
−
1
2
x
(
x
−
5
)
,
(
x
−
5
)
2
+
(
y
−
25
)
2
=
1030301
4
;
{\displaystyle {\begin{cases}y-25=-{\frac {1}{2x}}(x-5),&\\(x-5)^{2}+(y-25)^{2}={\frac {1030301}{4}};&\end{cases}}}
keitimo budu gauname:
(
x
−
5
)
2
+
(
−
1
2
x
(
x
−
5
)
)
2
=
1030301
4
,
{\displaystyle (x-5)^{2}+\left(-{\frac {1}{2x}}(x-5)\right)^{2}={\frac {1030301}{4}},}
(
x
−
5
)
2
+
1
4
x
2
(
x
−
5
)
2
=
1030301
4
,
{\displaystyle (x-5)^{2}+{\frac {1}{4x^{2}}}(x-5)^{2}={\frac {1030301}{4}},}
x
2
−
10
x
+
25
+
x
2
−
10
x
+
25
4
x
2
=
1030301
4
,
{\displaystyle x^{2}-10x+25+{\frac {x^{2}-10x+25}{4x^{2}}}={\frac {1030301}{4}},}
x
2
−
10
x
+
25
+
1
4
−
10
4
x
+
25
4
x
2
=
1030301
4
,
{\displaystyle x^{2}-10x+25+{\frac {1}{4}}-{\frac {10}{4x}}+{\frac {25}{4x^{2}}}={\frac {1030301}{4}},}
x
4
−
10
x
3
+
25
x
2
+
x
2
4
−
10
x
4
+
25
4
=
1030301
x
2
4
,
{\displaystyle x^{4}-10x^{3}+25x^{2}+{\frac {x^{2}}{4}}-{\frac {10x}{4}}+{\frac {25}{4}}={\frac {1030301x^{2}}{4}},}
x
4
−
10
x
3
+
25
x
2
+
x
2
4
−
1030301
x
2
4
−
10
x
4
+
25
4
=
0
,
{\displaystyle x^{4}-10x^{3}+25x^{2}+{\frac {x^{2}}{4}}-{\frac {1030301x^{2}}{4}}-{\frac {10x}{4}}+{\frac {25}{4}}=0,}
x
4
−
10
x
3
+
25.25
x
2
−
257575.25
x
2
−
2.5
x
+
6.25
=
0
,
{\displaystyle x^{4}-10x^{3}+25.25x^{2}-257575.25x^{2}-2.5x+6.25=0,}
x
4
−
10
x
3
−
257550
x
2
−
2.5
x
+
6.25
=
0.
{\displaystyle x^{4}-10x^{3}-257550x^{2}-2.5x+6.25=0.}
Tai yra ketvirto laipsnio lygtis, kurios sprendinius rasime pasinaudodami internetu (http://www.1728.org/quartic.htm ):
x
=
512.5184773519854
;
0.00492131702699794
;
−
502.51846764418235
;
−
0.004931024830113984.
{\displaystyle x=512.5184773519854;\;0.00492131702699794;\;-502.51846764418235;\;-0.004931024830113984.}
Vadinsi spindulio
R
1
{\displaystyle R_{1}}
centro
C
1
(
x
3
;
y
3
)
{\displaystyle C_{1}(x_{3};y_{3})}
abscisės
x
3
{\displaystyle x_{3}}
koordinatė turi buti viena iš keturių pateiktų. Kadangi vien spindulys
R
1
=
507.5187189
{\displaystyle R_{1}=507.5187189}
, tai centro abscisės koordinatė
x
3
{\displaystyle x_{3}}
yra arba
x
3
=
512.5184773519854
{\displaystyle x_{3}=512.5184773519854}
arba
x
3
=
−
502.51846764418235
{\displaystyle x_{3}=-502.51846764418235}
. Bet kadangi spindulys
R
1
{\displaystyle R_{1}}
yra parabolės liestinės normalė ir spindulio
R
1
{\displaystyle R_{1}}
galas (centras
C
1
{\displaystyle C_{1}}
) priklauso parabolės evoliutei, tai
x
3
=
−
502.51846764418235.
{\displaystyle x_{3}=-502.51846764418235.}
Žinodami
x
3
{\displaystyle x_{3}}
, įstatę į parabolės evoliutės lygtį, randame (sekančiame pavyzdyje pateiktas parabolės evoliutės lygties radimas):
y
3
=
3
x
3
2
3
16
1
3
+
1
2
=
3
⋅
(
−
502.5184676
)
2
3
16
1
3
+
1
2
=
3
⋅
252524.8103
1
3
16
1
3
+
1
2
=
{\displaystyle y_{3}={\frac {3x_{3}^{2 \over 3}}{16^{1 \over 3}}}+{\frac {1}{2}}={\frac {3\cdot (-502.5184676)^{2 \over 3}}{16^{1 \over 3}}}+{\frac {1}{2}}={\frac {3\cdot 252524.8103^{1 \over 3}}{16^{1 \over 3}}}+{\frac {1}{2}}=}
=
3
⋅
63.20741333
16
1
3
+
1
2
=
189.62224
2.5198421
+
1
2
=
75.25163581
+
0.5
=
75.75163581.
{\displaystyle ={\frac {3\cdot 63.20741333}{16^{1 \over 3}}}+{\frac {1}{2}}={\frac {189.62224}{2.5198421}}+{\frac {1}{2}}=75.25163581+0.5=75.75163581.}
Arba per Pitagoro teoremą randame:
y
p
=
R
1
2
−
(
x
3
−
x
1
)
2
=
507.5187189
2
−
(
−
502.5184676
−
5
)
2
=
257575.25
−
257574.995
=
{\displaystyle y_{p}={\sqrt {R_{1}^{2}-(x_{3}-x_{1})^{2}}}={\sqrt {507.5187189^{2}-(-502.5184676-5)^{2}}}={\sqrt {257575.25-257574.995}}=}
=
0.255045
=
0.505019801
;
{\displaystyle ={\sqrt {0.255045}}=0.505019801;}
y
3
=
y
1
+
y
p
=
25
+
0.505019801
=
25.5050198.
{\displaystyle y_{3}=y_{1}+y_{p}=25+0.505019801=25.5050198.}
Per Pitagoro teoremą gautas atsakymas panašus į tikrąjį, nes parabolės
y
=
x
2
{\displaystyle y=x^{2}}
taške
M
1
(
5
;
25
)
{\displaystyle M_{1}(5;25)}
spindulys
R
1
{\displaystyle R_{1}}
yra statmenas parabolės liestinei taške
M
1
(
5
;
25
)
{\displaystyle M_{1}(5;25)}
ir beveik lygiagretus Ox ašiai. O parabolės liestinė taške
M
1
(
5
;
25
)
{\displaystyle M_{1}(5;25)}
yra beveik lygiagreti Oy ašiai. Taigi, radome spindulio
R
1
{\displaystyle R_{1}}
centrą
C
1
(
−
502.5184676
;
25.5050198
)
,
{\displaystyle C_{1}(-502.5184676;\;25.5050198),}
kuris nedaug skiriasi nuo teisingo
C
1
(
−
500
;
75.5
)
.
{\displaystyle C_{1}(-500;\;75.5).}
Toliau rasime spindulio
R
0
=
1
2
{\displaystyle R_{0}={\frac {1}{2}}}
centro
C
0
(
x
2
;
y
2
)
{\displaystyle C_{0}(x_{2};\;y_{2})}
koordinates. Žinome, kad
(
x
2
−
x
0
)
2
+
(
y
2
−
y
0
)
2
=
R
0
2
,
{\displaystyle (x_{2}-x_{0})^{2}+(y_{2}-y_{0})^{2}=R_{0}^{2},}
(
x
2
−
0
)
2
+
(
y
2
−
0
)
2
=
R
0
,
{\displaystyle {\sqrt {(x_{2}-0)^{2}+(y_{2}-0)^{2}}}=R_{0},}
(
x
2
−
0
)
2
+
(
y
2
−
0
)
2
=
(
1
2
)
2
,
{\displaystyle (x_{2}-0)^{2}+(y_{2}-0)^{2}=\left({\frac {1}{2}}\right)^{2},}
(
x
3
−
0
)
2
+
(
y
3
−
0
)
2
=
1
4
.
{\displaystyle (x_{3}-0)^{2}+(y_{3}-0)^{2}={\frac {1}{4}}.}
Išsprendę lygčių sistemą rasime
x
2
{\displaystyle x_{2}}
(taško
C
0
{\displaystyle C_{0}}
koordinate):
{
y
−
0
=
−
1
2
x
(
x
−
0
)
,
(
x
−
0
)
2
+
(
y
−
0
)
2
=
1
4
;
{\displaystyle {\begin{cases}y-0=-{\frac {1}{2x}}(x-0),&\\(x-0)^{2}+(y-0)^{2}={\frac {1}{4}};&\end{cases}}}
keitimo budu gauname:
(
x
−
0
)
2
+
(
−
1
2
x
(
x
−
0
)
)
2
=
1
4
,
{\displaystyle (x-0)^{2}+\left(-{\frac {1}{2x}}(x-0)\right)^{2}={\frac {1}{4}},}
x
2
+
1
4
x
2
(
x
−
0
)
2
=
1
4
,
{\displaystyle x^{2}+{\frac {1}{4x^{2}}}(x-0)^{2}={\frac {1}{4}},}
x
2
+
x
2
4
x
2
=
1
4
,
{\displaystyle x^{2}+{\frac {x^{2}}{4x^{2}}}={\frac {1}{4}},}
x
2
+
1
4
=
1
4
,
{\displaystyle x^{2}+{\frac {1}{4}}={\frac {1}{4}},}
x
2
=
1
4
−
1
4
,
{\displaystyle x^{2}={\frac {1}{4}}-{\frac {1}{4}},}
x
=
0.
{\displaystyle x=0.}
Taigi,
x
2
=
0.
{\displaystyle x_{2}=0.}
Žinodami
x
2
{\displaystyle x_{2}}
, įstatę į parabolės evoliutės lygtį, randame (sekančiame pavyzdyje pateiktas parabolės evoliutės lygties radimas):
y
2
=
3
x
2
2
3
16
1
3
+
1
2
=
3
⋅
0
2
3
16
1
3
+
1
2
=
1
2
=
0.5.
{\displaystyle y_{2}={\frac {3x_{2}^{2 \over 3}}{16^{1 \over 3}}}+{\frac {1}{2}}={\frac {3\cdot 0^{2 \over 3}}{16^{1 \over 3}}}+{\frac {1}{2}}={\frac {1}{2}}=0.5.}
Arba per Pitagoro teoremą randame:
y
d
=
R
0
2
−
(
x
2
−
x
0
)
2
=
0.5
2
−
(
0
−
0
)
2
=
0.25
−
0
=
0.25
=
0.5
;
{\displaystyle y_{d}={\sqrt {R_{0}^{2}-(x_{2}-x_{0})^{2}}}={\sqrt {0.5^{2}-(0-0)^{2}}}={\sqrt {0.25-0}}={\sqrt {0.25}}=0.5;}
y
3
=
y
0
+
y
d
=
0
+
0.5
=
0.5.
{\displaystyle y_{3}=y_{0}+y_{d}=0+0.5=0.5.}
Radome spindulio
R
0
{\displaystyle R_{0}}
centrą
C
0
(
0
;
1
2
)
.
{\displaystyle C_{0}(0;\;{\frac {1}{2}}).}
Bet dėl kažkokių priežasčių sprendžiant ketvirtojo laipsnio lygtį nebuvo gautos visiškai teisingos
C
1
{\displaystyle C_{1}}
koordinatės, o tik panašios.
Kreivės užrašytos parametriškai
x
=
ϕ
(
t
)
,
y
=
ψ
(
t
)
,
z
=
ω
(
t
)
,
{\displaystyle x=\phi (t),\quad y=\psi (t),\quad z=\omega (t),}
kreivio apskaičiavimo formulė yra:
K
2
=
1
R
2
=
(
ψ
′
ω
″
−
ω
′
ψ
″
)
2
+
(
ϕ
′
ω
″
−
ω
′
ϕ
″
)
2
+
(
ϕ
′
ψ
″
−
ψ
′
ϕ
″
)
2
[
(
ϕ
′
)
2
+
(
ψ
′
)
2
+
(
ω
′
)
2
]
3
;
{\displaystyle K^{2}={\frac {1}{R^{2}}}={\frac {(\psi '\omega ''-\omega '\psi '')^{2}+(\phi '\omega ''-\omega '\phi '')^{2}+(\phi '\psi ''-\psi '\phi '')^{2}}{[(\phi ')^{2}+(\psi ')^{2}+(\omega ')^{2}]^{3}}};}
K
=
1
R
=
(
ψ
′
ω
″
−
ω
′
ψ
″
)
2
+
(
ϕ
′
ω
″
−
ω
′
ϕ
″
)
2
+
(
ϕ
′
ψ
″
−
ψ
′
ϕ
″
)
2
(
(
ϕ
′
)
2
+
(
ψ
′
)
2
+
(
ω
′
)
2
)
3
2
;
{\displaystyle K={\frac {1}{R}}={\frac {\sqrt {(\psi '\omega ''-\omega '\psi '')^{2}+(\phi '\omega ''-\omega '\phi '')^{2}+(\phi '\psi ''-\psi '\phi '')^{2}}}{((\phi ')^{2}+(\psi ')^{2}+(\omega ')^{2})^{3 \over 2}}};}
R
=
(
(
ϕ
′
)
2
+
(
ψ
′
)
2
+
(
ω
′
)
2
)
3
2
(
ψ
′
ω
″
−
ω
′
ψ
″
)
2
+
(
ϕ
′
ω
″
−
ω
′
ϕ
″
)
2
+
(
ϕ
′
ψ
″
−
ψ
′
ϕ
″
)
2
.
{\displaystyle R={\frac {((\phi ')^{2}+(\psi ')^{2}+(\omega ')^{2})^{3 \over 2}}{\sqrt {(\psi '\omega ''-\omega '\psi '')^{2}+(\phi '\omega ''-\omega '\phi '')^{2}+(\phi '\psi ''-\psi '\phi '')^{2}}}}.}
Galima naudotis ir šita formule:
K
2
=
1
R
2
=
(
(
ϕ
′
)
2
+
(
ψ
′
)
2
+
(
ω
′
)
2
)
(
(
ϕ
″
)
2
+
(
ψ
″
)
2
+
(
ω
″
)
2
)
−
(
ϕ
′
ϕ
″
+
ψ
′
ψ
″
+
ω
′
ω
″
)
2
(
(
ϕ
′
)
2
+
(
ψ
′
)
2
+
(
ω
′
)
2
)
3
.
{\displaystyle K^{2}={\frac {1}{R^{2}}}={\frac {((\phi ')^{2}+(\psi ')^{2}+(\omega ')^{2})((\phi '')^{2}+(\psi '')^{2}+(\omega '')^{2})-(\phi '\phi ''+\psi '\psi ''+\omega '\omega '')^{2}}{((\phi ')^{2}+(\psi ')^{2}+(\omega ')^{2})^{3}}}.}
Kreivis yra kampo
α
{\displaystyle \alpha }
tarp erdvinės linijos liestinių skirtinguose taškuose M ir N santykis su tos kreivės lanko ilgiu ds tarp tų taškų. Kamui
α
{\displaystyle \alpha }
artėjant prie nulio, artėja ir krevės lanko ilgis prie nulio.
Kreivė užrašyta parametriškai
x
=
ϕ
(
t
)
,
y
=
ψ
(
t
)
,
z
=
ω
(
t
)
,
{\displaystyle x=\phi (t),\quad y=\psi (t),\quad z=\omega (t),}
taške
M
1
(
x
1
;
y
1
;
z
1
)
{\displaystyle M_{1}(x_{1};y_{1};z_{1})}
turi liestinės vektorių:
a
→
=
{
ϕ
′
(
x
1
)
;
ψ
′
(
y
1
)
;
ω
′
(
z
1
)
}
.
{\displaystyle {\vec {a}}=\{\phi '(x_{1});\psi '(y_{1});\omega '(z_{1})\}.}
Taškas
M
2
(
x
2
;
y
2
;
z
2
)
{\displaystyle M_{2}(x_{2};y_{2};z_{2})}
turi liestinės vektorių:
b
→
=
{
ϕ
′
(
x
2
)
;
ψ
′
(
y
2
)
;
ω
′
(
z
2
)
}
.
{\displaystyle {\vec {b}}=\{\phi '(x_{2});\psi '(y_{2});\omega '(z_{2})\}.}
Kampas tarp liestinių taškuose
M
1
{\displaystyle M_{1}}
ir
M
2
{\displaystyle M_{2}}
yra lygus kamui tarp vektorių
a
→
{\displaystyle {\vec {a}}}
ir
b
→
{\displaystyle {\vec {b}}}
:
α
=
arcsin
‖
a
×
b
‖
‖
a
‖
‖
b
‖
=
arcsin
(
ψ
′
(
x
1
)
ω
′
(
x
2
)
−
ω
′
(
x
1
)
ψ
′
(
x
2
)
)
2
+
(
ϕ
′
(
x
1
)
ω
′
(
x
2
)
−
ω
′
(
x
1
)
ϕ
′
(
x
2
)
)
2
+
(
ϕ
′
(
x
1
)
ψ
′
(
x
2
)
−
ψ
′
(
x
1
)
ϕ
′
(
x
2
)
)
2
(
ϕ
′
(
x
1
)
)
2
+
(
ψ
′
(
y
1
)
)
2
+
(
ω
′
(
z
1
)
)
2
ϕ
′
(
x
2
)
)
2
+
(
ψ
′
(
y
2
)
)
2
+
(
ω
′
(
z
2
)
)
2
.
{\displaystyle \alpha =\arcsin {\frac {\|\mathbf {a} \times \mathbf {b} \|}{\|\mathbf {a} \|\|\mathbf {b} \|}}=\arcsin {\frac {\sqrt {(\psi '(x_{1})\omega '(x_{2})-\omega '(x_{1})\psi '(x_{2}))^{2}+(\phi '(x_{1})\omega '(x_{2})-\omega '(x_{1})\phi '(x_{2}))^{2}+(\phi '(x_{1})\psi '(x_{2})-\psi '(x_{1})\phi '(x_{2}))^{2}}}{{\sqrt {(\phi '(x_{1}))^{2}+(\psi '(y_{1}))^{2}+(\omega '(z_{1}))^{2}}}{\sqrt {\phi '(x_{2}))^{2}+(\psi '(y_{2}))^{2}+(\omega '(z_{2}))^{2}}}}}.}
Erdvinės linijos kreivį iš taško
M
1
{\displaystyle M_{1}}
iki taško
M
2
{\displaystyle M_{2}}
galima apskaičiuoti taip:
K
=
α
∫
M
1
M
2
(
(
ϕ
′
)
2
+
(
ψ
′
)
2
+
(
ω
′
)
2
)
d
t
=
arcsin
‖
a
×
b
‖
‖
a
‖
‖
b
‖
∫
M
1
M
2
(
(
ϕ
′
)
2
+
(
ψ
′
)
2
+
(
ω
′
)
2
)
d
t
=
{\displaystyle K={\frac {\alpha }{\int _{M_{1}}^{M_{2}}((\phi ')^{2}+(\psi ')^{2}+(\omega ')^{2})\mathbf {d} t}}={\frac {\arcsin {\frac {\|\mathbf {a} \times \mathbf {b} \|}{\|\mathbf {a} \|\|\mathbf {b} \|}}}{\int _{M_{1}}^{M_{2}}((\phi ')^{2}+(\psi ')^{2}+(\omega ')^{2})\mathbf {d} t}}=}
=
arcsin
(
ψ
′
(
x
1
)
ω
′
(
x
2
)
−
ω
′
(
x
1
)
ψ
′
(
x
2
)
)
2
+
(
ϕ
′
(
x
1
)
ω
′
(
x
2
)
−
ω
′
(
x
1
)
ϕ
′
(
x
2
)
)
2
+
(
ϕ
′
(
x
1
)
ψ
′
(
x
2
)
−
ψ
′
(
x
1
)
ϕ
′
(
x
2
)
)
2
(
ϕ
′
(
x
1
)
)
2
+
(
ψ
′
(
y
1
)
)
2
+
(
ω
′
(
z
1
)
)
2
ϕ
′
(
x
2
)
)
2
+
(
ψ
′
(
y
2
)
)
2
+
(
ω
′
(
z
2
)
)
2
∫
M
1
M
2
(
(
ϕ
′
)
2
+
(
ψ
′
)
2
+
(
ω
′
)
2
)
d
t
.
{\displaystyle ={\frac {\arcsin {\frac {\sqrt {(\psi '(x_{1})\omega '(x_{2})-\omega '(x_{1})\psi '(x_{2}))^{2}+(\phi '(x_{1})\omega '(x_{2})-\omega '(x_{1})\phi '(x_{2}))^{2}+(\phi '(x_{1})\psi '(x_{2})-\psi '(x_{1})\phi '(x_{2}))^{2}}}{{\sqrt {(\phi '(x_{1}))^{2}+(\psi '(y_{1}))^{2}+(\omega '(z_{1}))^{2}}}{\sqrt {\phi '(x_{2}))^{2}+(\psi '(y_{2}))^{2}+(\omega '(z_{2}))^{2}}}}}}{\int _{M_{1}}^{M_{2}}((\phi ')^{2}+(\psi ')^{2}+(\omega ')^{2})\mathbf {d} t}}.}
Jei vektoriai liestinių normalizuoti, tuomet kampą tarp jų galima užrašyti taip:
α
=
arcsin
‖
a
∘
×
b
∘
‖
,
{\displaystyle \alpha =\arcsin \|\mathbf {a} ^{\circ }\times \mathbf {b} ^{\circ }\|,}
čia
a
∘
=
a
→
(
ϕ
′
(
x
1
)
)
2
+
(
ψ
′
(
y
1
)
)
2
+
(
ω
′
(
z
1
)
)
2
;
b
∘
=
b
→
(
ϕ
′
(
x
2
)
)
2
+
(
ψ
′
(
y
2
)
)
2
+
(
ω
′
(
z
2
)
)
2
.
{\displaystyle \mathbf {a} ^{\circ }={\frac {\vec {a}}{\sqrt {(\phi '(x_{1}))^{2}+(\psi '(y_{1}))^{2}+(\omega '(z_{1}))^{2}}}};\;\;\mathbf {b} ^{\circ }={\frac {\vec {b}}{\sqrt {(\phi '(x_{2}))^{2}+(\psi '(y_{2}))^{2}+(\omega '(z_{2}))^{2}}}}.}
Kai kampas
α
{\displaystyle \alpha }
artėja į nulį,
α
→
0
,
{\displaystyle \alpha \to 0,}
tada
M
2
→
M
1
{\displaystyle M_{2}\to M_{1}}
ir kreivės lanko ilgis s tarp taškų
M
1
{\displaystyle M_{1}}
ir
M
2
{\displaystyle M_{2}}
artėja į nulį,
s
→
0
{\displaystyle s\to 0}
, tada turime:
lim
M
2
→
M
1
∫
M
1
M
2
(
(
ϕ
′
)
2
+
(
ψ
′
)
2
+
(
ω
′
)
2
)
d
t
=
(
ϕ
′
)
2
+
(
ψ
′
)
2
+
(
ω
′
)
2
=
d
s
.
{\displaystyle \lim _{M_{2}\to M_{1}}\int _{M_{1}}^{M_{2}}((\phi ')^{2}+(\psi ')^{2}+(\omega ')^{2})\mathbf {d} t={\sqrt {(\phi ')^{2}+(\psi ')^{2}+(\omega ')^{2}}}=\mathbf {d} s.}
Kai kampas
α
{\displaystyle \alpha }
artėja į nulį iš formulės
lim
x
→
0
=
sin
x
x
=
1
{\displaystyle \lim _{x\to 0}={\frac {\sin x}{x}}=1}
turime
α
=
sin
α
{\displaystyle \alpha =\sin \alpha }
. Iš vektorių žinome, kad
sin
α
=
‖
a
×
b
‖
‖
a
‖
‖
b
‖
,
{\displaystyle \sin \alpha ={\frac {\|\mathbf {a} \times \mathbf {b} \|}{\|\mathbf {a} \|\|\mathbf {b} \|}},}
todėl kreivis lygus:
K
=
lim
α
→
0
α
lim
M
2
→
M
1
∫
M
1
M
2
(
(
ϕ
′
)
2
+
(
ψ
′
)
2
+
(
ω
′
)
2
)
d
t
=
sin
α
d
s
=
‖
a
×
b
‖
‖
a
‖
‖
b
‖
(
ϕ
′
(
x
1
)
)
2
+
(
ψ
′
(
y
1
)
)
2
+
(
ω
′
(
z
1
)
)
2
=
{\displaystyle K={\frac {\lim _{\alpha \to 0}\alpha }{\lim _{M_{2}\to M_{1}}\int _{M_{1}}^{M_{2}}((\phi ')^{2}+(\psi ')^{2}+(\omega ')^{2})\mathbf {d} t}}={\frac {\sin \alpha }{\mathbf {d} s}}={\frac {\frac {\|\mathbf {a} \times \mathbf {b} \|}{\|\mathbf {a} \|\|\mathbf {b} \|}}{\sqrt {(\phi '(x_{1}))^{2}+(\psi '(y_{1}))^{2}+(\omega '(z_{1}))^{2}}}}=}
=
(
ψ
′
(
x
1
)
ω
′
(
x
2
)
−
ω
′
(
x
1
)
ψ
′
(
x
2
)
)
2
+
(
ϕ
′
(
x
1
)
ω
′
(
x
2
)
−
ω
′
(
x
1
)
ϕ
′
(
x
2
)
)
2
+
(
ϕ
′
(
x
1
)
ψ
′
(
x
2
)
−
ψ
′
(
x
1
)
ϕ
′
(
x
2
)
)
2
(
ϕ
′
(
x
1
)
)
2
+
(
ψ
′
(
y
1
)
)
2
+
(
ω
′
(
z
1
)
)
2
(
ϕ
′
(
x
1
)
)
2
+
(
ψ
′
(
y
1
)
)
2
+
(
ω
′
(
z
1
)
)
2
(
ϕ
′
(
x
1
)
)
2
+
(
ψ
′
(
y
1
)
)
2
+
(
ω
′
(
z
1
)
)
2
=
{\displaystyle ={\frac {\frac {\sqrt {(\psi '(x_{1})\omega '(x_{2})-\omega '(x_{1})\psi '(x_{2}))^{2}+(\phi '(x_{1})\omega '(x_{2})-\omega '(x_{1})\phi '(x_{2}))^{2}+(\phi '(x_{1})\psi '(x_{2})-\psi '(x_{1})\phi '(x_{2}))^{2}}}{{\sqrt {(\phi '(x_{1}))^{2}+(\psi '(y_{1}))^{2}+(\omega '(z_{1}))^{2}}}{\sqrt {(\phi '(x_{1}))^{2}+(\psi '(y_{1}))^{2}+(\omega '(z_{1}))^{2}}}}}{\sqrt {(\phi '(x_{1}))^{2}+(\psi '(y_{1}))^{2}+(\omega '(z_{1}))^{2}}}}=}
=
(
ψ
′
(
x
1
)
ω
′
(
x
2
)
−
ω
′
(
x
1
)
ψ
′
(
x
2
)
)
2
+
(
ϕ
′
(
x
1
)
ω
′
(
x
2
)
−
ω
′
(
x
1
)
ϕ
′
(
x
2
)
)
2
+
(
ϕ
′
(
x
1
)
ψ
′
(
x
2
)
−
ψ
′
(
x
1
)
ϕ
′
(
x
2
)
)
2
(
ϕ
′
(
x
1
)
)
2
+
(
ψ
′
(
y
1
)
)
2
+
(
ω
′
(
z
1
)
)
2
)
3
2
.
{\displaystyle ={\frac {\sqrt {(\psi '(x_{1})\omega '(x_{2})-\omega '(x_{1})\psi '(x_{2}))^{2}+(\phi '(x_{1})\omega '(x_{2})-\omega '(x_{1})\phi '(x_{2}))^{2}+(\phi '(x_{1})\psi '(x_{2})-\psi '(x_{1})\phi '(x_{2}))^{2}}}{(\phi '(x_{1}))^{2}+(\psi '(y_{1}))^{2}+(\omega '(z_{1}))^{2})^{3 \over 2}}}.}
Skaityklyje negalime įstatyti vektoriaus
a
→
=
{
ϕ
′
(
x
1
)
;
ψ
′
(
y
1
)
;
ω
′
(
z
1
)
}
{\displaystyle {\vec {a}}=\{\phi '(x_{1});\psi '(y_{1});\omega '(z_{1})\}}
koordinačių, nes kreivis tampa lygus nuliui.
Žinome, kad dvimatėje erdvėje ant plokštumos xOy kokios nors kreivės liestinės kampas su Ox ašimi yra
lim
Δ
x
→
0
Δ
y
Δ
x
=
d
y
d
x
=
tan
α
.
{\displaystyle \lim _{\Delta x\to 0}{\frac {\Delta y}{\Delta x}}={\frac {dy}{dx}}=\tan \alpha .}
Jeigu vektoriaus
{
ϕ
′
(
x
2
)
;
ψ
′
(
y
2
)
;
ω
′
(
z
2
)
}
{\displaystyle \{\phi '(x_{2});\psi '(y_{2});\omega '(z_{2})\}}
kiekvieną iš parametrinių funkcijų padalinsime iš
Δ
t
{\displaystyle \Delta t}
, kai
Δ
t
{\displaystyle \Delta t}
yra parametro t atstumas iki kol bus pasiektas taškas
M
1
(
x
1
;
y
1
;
z
1
)
,
{\displaystyle M_{1}(x_{1};y_{1};z_{1}),}
tai gausime vektorių
lim
Δ
t
→
0
;
t
→
p
o
z
i
c
i
j
a
M
1
{
Δ
ϕ
′
(
x
2
)
Δ
t
;
Δ
ψ
′
(
y
2
)
Δ
t
;
Δ
ω
′
(
z
2
)
Δ
t
}
=
{
ϕ
″
(
x
1
)
;
ψ
″
(
y
1
)
;
ω
″
(
z
1
)
}
.
{\displaystyle \lim _{\Delta t\to 0;\;t\to pozicija\;M_{1}}\{{\frac {\Delta \phi '(x_{2})}{\Delta t}};{\frac {\Delta \psi '(y_{2})}{\Delta t}};{\frac {\Delta \omega '(z_{2})}{\Delta t}}\}=\{\phi ''(x_{1});\psi ''(y_{1});\omega ''(z_{1})\}.}
Kai liestinės dvimatėje erdvėje kampas
α
{\displaystyle \alpha }
yra surištas su
tan
α
{\displaystyle \tan \alpha }
, tai
d
y
d
x
{\displaystyle {\frac {dy}{dx}}}
savybės negali būti panaudotos vektoriui apibūdinti. Mūsų atveju, mes jau turime, kad
sin
α
=
α
{\displaystyle \sin \alpha =\alpha }
tarp vektorių, kai mažėja kampas
α
{\displaystyle \alpha }
. Todėl suradę prie ko artėja riba
lim
Δ
t
→
0
{
Δ
ϕ
′
(
x
2
)
Δ
t
;
Δ
ψ
′
(
y
2
)
Δ
t
;
Δ
ω
′
(
z
2
)
Δ
t
}
,
{\displaystyle \lim _{\Delta t\to 0}\{{\frac {\Delta \phi '(x_{2})}{\Delta t}};{\frac {\Delta \psi '(y_{2})}{\Delta t}};{\frac {\Delta \omega '(z_{2})}{\Delta t}}\},}
artėjant kamui
α
{\displaystyle \alpha }
prie nulio, turime kampo išvestinę, kuri savo reikšme analogiška funkcijos kitimo greičio išvestinei tam tikrame taške. Kampo išvestinė reiškia, kiek linija nukrypsta nuo savo pradinės trajektorijos tam tikrame taške. Tiesės kampo išvestinė yra lygi nuliui, nes linija nenukrypsta nei kiek. Vektoriaus
b
→
{\displaystyle {\vec {b}}}
ilgis, artėjant taškui
M
2
{\displaystyle M_{2}}
prie taško
M
1
{\displaystyle M_{1}}
, tampa lygus vektoriaus
a
→
{\displaystyle {\vec {a}}}
ilgiui, todėl
lim
M
2
→
M
1
(
ϕ
′
(
x
2
)
)
2
+
(
ψ
′
(
y
2
)
)
2
+
(
ω
′
(
z
2
)
)
2
=
(
ϕ
′
(
x
1
)
)
2
+
(
ψ
′
(
y
1
)
)
2
+
(
ω
′
(
z
1
)
)
2
.
{\displaystyle \lim _{M_{2}\to M_{1}}{\sqrt {(\phi '(x_{2}))^{2}+(\psi '(y_{2}))^{2}+(\omega '(z_{2}))^{2}}}={\sqrt {(\phi '(x_{1}))^{2}+(\psi '(y_{1}))^{2}+(\omega '(z_{1}))^{2}}}.}
Iš vektorių formulės
cos
α
=
a
⋅
b
‖
a
‖
⋅
‖
b
‖
{\displaystyle \cos \alpha ={\frac {\mathbf {a} \cdot \mathbf {b} }{\|\mathbf {a} \|\cdot \|\mathbf {b} \|}}}
turime:
sin
2
α
=
1
−
cos
2
α
,
{\displaystyle \sin ^{2}\alpha =1-\cos ^{2}\alpha ,}
arba Lagrandžo tapatumą:
‖
a
×
b
‖
2
=
‖
a
‖
2
‖
b
‖
2
−
(
a
⋅
b
)
2
,
{\displaystyle \|\mathbf {a} \times \mathbf {b} \|^{2}=\|\mathbf {a} \|^{2}\|\mathbf {b} \|^{2}-(\mathbf {a} \cdot \mathbf {b} )^{2},}
‖
a
×
b
‖
‖
a
‖
‖
b
‖
=
1
−
(
a
⋅
b
)
2
‖
a
‖
2
‖
b
‖
2
.
{\displaystyle {\frac {\|\mathbf {a} \times \mathbf {b} \|}{\|\mathbf {a} \|\|\mathbf {b} \|}}={\sqrt {1-{\frac {(\mathbf {a} \cdot \mathbf {b} )^{2}}{\|\mathbf {a} \|^{2}\|\mathbf {b} \|^{2}}}}}.}
Apskaičiavimas kreivio linijos, užrašytos parametriškai erdvėje
Kreivės užrašytos parametriškai
x
=
ϕ
(
t
)
,
y
=
ψ
(
t
)
,
z
=
ω
(
t
)
,
{\displaystyle x=\phi (t),\quad y=\psi (t),\quad z=\omega (t),}
kreivio apskaičiavimo formulė yra:
K
2
=
1
R
2
=
(
ψ
′
ω
″
−
ω
′
ψ
″
)
2
+
(
ϕ
′
ω
″
−
ω
′
ϕ
″
)
2
+
(
ϕ
′
ψ
″
−
ψ
′
ϕ
″
)
2
[
(
ϕ
′
)
2
+
(
ψ
′
)
2
+
(
ω
′
)
2
]
3
;
{\displaystyle K^{2}={\frac {1}{R^{2}}}={\frac {(\psi '\omega ''-\omega '\psi '')^{2}+(\phi '\omega ''-\omega '\phi '')^{2}+(\phi '\psi ''-\psi '\phi '')^{2}}{[(\phi ')^{2}+(\psi ')^{2}+(\omega ')^{2}]^{3}}};}
K
=
1
R
=
(
ψ
′
ω
″
−
ω
′
ψ
″
)
2
+
(
ϕ
′
ω
″
−
ω
′
ϕ
″
)
2
+
(
ϕ
′
ψ
″
−
ψ
′
ϕ
″
)
2
(
(
ϕ
′
)
2
+
(
ψ
′
)
2
+
(
ω
′
)
2
)
3
2
;
{\displaystyle K={\frac {1}{R}}={\frac {\sqrt {(\psi '\omega ''-\omega '\psi '')^{2}+(\phi '\omega ''-\omega '\phi '')^{2}+(\phi '\psi ''-\psi '\phi '')^{2}}}{((\phi ')^{2}+(\psi ')^{2}+(\omega ')^{2})^{3 \over 2}}};}
R
=
(
(
ϕ
′
)
2
+
(
ψ
′
)
2
+
(
ω
′
)
2
)
3
2
(
ψ
′
ω
″
−
ω
′
ψ
″
)
2
+
(
ϕ
′
ω
″
−
ω
′
ϕ
″
)
2
+
(
ϕ
′
ψ
″
−
ψ
′
ϕ
″
)
2
.
{\displaystyle R={\frac {((\phi ')^{2}+(\psi ')^{2}+(\omega ')^{2})^{3 \over 2}}{\sqrt {(\psi '\omega ''-\omega '\psi '')^{2}+(\phi '\omega ''-\omega '\phi '')^{2}+(\phi '\psi ''-\psi '\phi '')^{2}}}}.}
Galima naudotis ir šita formule:
K
2
=
1
R
2
=
(
(
ϕ
′
)
2
+
(
ψ
′
)
2
+
(
ω
′
)
2
)
(
(
ϕ
″
)
2
+
(
ψ
″
)
2
+
(
ω
″
)
2
)
−
(
ϕ
′
ϕ
″
+
ψ
′
ψ
″
+
ω
′
ω
″
)
2
(
(
ϕ
′
)
2
+
(
ψ
′
)
2
+
(
ω
′
)
2
)
3
.
{\displaystyle K^{2}={\frac {1}{R^{2}}}={\frac {((\phi ')^{2}+(\psi ')^{2}+(\omega ')^{2})((\phi '')^{2}+(\psi '')^{2}+(\omega '')^{2})-(\phi '\phi ''+\psi '\psi ''+\omega '\omega '')^{2}}{((\phi ')^{2}+(\psi ')^{2}+(\omega ')^{2})^{3}}}.}
Kreivės liestinės vektorius taške
M
(
x
M
;
y
M
;
z
M
)
{\displaystyle M(x_{M};y_{M};z_{M})}
yra
a
→
=
{
ϕ
′
(
x
M
)
;
ψ
′
(
y
M
)
;
ω
′
(
z
M
)
}
.
{\displaystyle {\vec {a}}=\{\phi '(x_{M});\psi '(y_{M});\omega '(z_{M})\}.}
Šis liestinės vektorius yra lygiagretus kreivės liestinei taške
M
(
x
M
;
y
M
;
z
M
)
.
{\displaystyle M(x_{M};y_{M};z_{M}).}
Erdvinės kreivės liestinės lygtis taške
M
(
x
M
;
y
M
;
z
M
)
{\displaystyle M(x_{M};y_{M};z_{M})}
yra:
x
−
x
M
ϕ
′
(
x
M
)
=
y
−
y
M
ψ
′
(
y
M
)
=
z
−
z
M
ω
′
(
z
M
)
;
{\displaystyle {\frac {x-x_{M}}{\phi '(x_{M})}}={\frac {y-y_{M}}{\psi '(y_{M})}}={\frac {z-z_{M}}{\omega '(z_{M})}};}
arba
{
x
−
x
M
=
t
ϕ
′
(
x
M
)
,
y
−
y
M
=
t
ψ
′
(
y
M
)
,
z
−
z
M
=
t
ω
′
(
z
M
)
.
{\displaystyle {\begin{cases}x-x_{M}=t\phi '(x_{M}),&\\y-y_{M}=t\psi '(y_{M}),&\\z-z_{M}=t\omega '(z_{M}).&\end{cases}}}
Kreivės normalės vektorius (kreivio spindulio vektorius) taške
M
(
x
M
;
y
M
;
z
M
)
{\displaystyle M(x_{M};y_{M};z_{M})}
yra
b
→
=
{
1
ϕ
′
(
x
M
)
;
1
ψ
′
(
y
M
)
;
1
ω
′
(
z
M
)
}
{\displaystyle {\vec {b}}=\{{\frac {1}{\phi '(x_{M})}};{\frac {1}{\psi '(y_{M})}};{\frac {1}{\omega '(z_{M})}}\}}
tik toms parametrinėms funkcijoms kurių rodikliai p yra riboje
(
1
;
∞
)
,
{\displaystyle (1;\infty ),}
tai yra
t
p
;
1
<
p
,
{\displaystyle t^{p};\;1<p,}
pavyzdžiui,
t
2
{\displaystyle t^{2}}
,
t
3
{\displaystyle t^{3}}
,
t
3
2
{\displaystyle t^{3 \over 2}}
,
t
5
.
{\displaystyle t^{5}.}
Pavyzdžiui, funkcija užrašyta parametriškai
ϕ
(
t
)
=
t
2
,
ψ
(
t
)
=
t
3
,
ω
(
t
)
=
t
4
,
{\displaystyle \phi (t)=t^{2},\;\psi (t)=t^{3},\;\omega (t)=t^{4},}
turi normalės vektorių
b
→
=
{
1
2
x
M
;
1
3
x
M
2
;
1
4
x
M
3
}
.
{\displaystyle {\vec {b}}=\{{\frac {1}{2x_{M}}};{\frac {1}{3x_{M}^{2}}};{\frac {1}{4x_{M}^{3}}}\}.}
Kreivės normalės vektorius
b
→
=
{
1
±
ϕ
′
(
x
M
)
;
1
±
ψ
′
(
y
M
)
;
1
±
ω
′
(
z
M
)
}
{\displaystyle {\vec {b}}=\{{\frac {1}{\pm \phi '(x_{M})}};{\frac {1}{\pm \psi '(y_{M})}};{\frac {1}{\pm \omega '(z_{M})}}\}}
taške
M
(
x
M
;
y
M
;
z
M
)
{\displaystyle M(x_{M};y_{M};z_{M})}
yra visoms funkcijoms užrašytoms parametriškai. Minuso ženklas prie išvestinės vardiklyje pasirenkamas tuo atveju, jeigu rodiklis parametro yra
−
1
≤
p
<
1
{\displaystyle -1\leq p<1}
. Pavyzdžiui, funkcija užrašyta parametriškai
ϕ
(
t
)
=
t
1
3
,
ψ
(
t
)
=
t
1
2
,
ω
(
t
)
=
t
3
,
{\displaystyle \phi (t)=t^{1 \over 3},\;\psi (t)=t^{1 \over 2},\;\omega (t)=t^{3},}
turi taške
M
(
x
M
;
y
M
;
z
M
)
{\displaystyle M(x_{M};y_{M};z_{M})}
tik vieną normalės vektorių statmeną kreivės liestinei taške
M
(
x
M
;
y
M
;
z
M
)
,
{\displaystyle M(x_{M};y_{M};z_{M}),}
kuris yra:
b
→
=
{
1
−
ϕ
′
(
x
M
)
;
1
−
ψ
′
(
y
M
)
;
1
ω
′
(
z
M
)
}
;
{\displaystyle {\vec {b}}=\{{\frac {1}{-\phi '(x_{M})}};{\frac {1}{-\psi '(y_{M})}};{\frac {1}{\omega '(z_{M})}}\};}
b
→
=
{
1
−
1
3
t
2
;
1
−
1
2
t
;
1
3
t
2
}
,
{\displaystyle {\vec {b}}=\{{\frac {1}{-{\frac {1}{3{\sqrt {t^{2}}}}}}};{\frac {1}{-{\frac {1}{2{\sqrt {t}}}}}};{\frac {1}{3t^{2}}}\},}
b
→
=
{
−
3
t
2
;
−
2
t
;
1
3
t
2
}
,
{\displaystyle {\vec {b}}=\{-3{\sqrt {t^{2}}};-2{\sqrt {t}};{\frac {1}{3t^{2}}}\},}
b
→
=
{
−
3
x
M
2
;
−
2
y
M
;
1
3
z
M
2
}
.
{\displaystyle {\vec {b}}=\{-3{\sqrt {x_{M}^{2}}};-2{\sqrt {y_{M}}};{\frac {1}{3z_{M}^{2}}}\}.}
Jeigu funkcijos parametras yra
t
p
{\displaystyle t^{p}}
ir
p
=
1
{\displaystyle p=1}
, tada pliuso ar minuso ženklą pasirinkti prie parametrinės funkcijos išvestinės priklauso nuo kitų funkcijų. Pavyzdžiui, parametrinėms funkcijoms
ϕ
(
t
)
=
t
{\displaystyle \phi (t)=t}
,
ψ
(
t
)
=
t
2
{\displaystyle \psi (t)=t^{2}}
,
ω
(
t
)
=
t
3
{\displaystyle \omega (t)=t^{3}}
gausime kreivės užrašytos šitomis parametrinėmis funkcijomis normalės vektorių:
b
→
=
{
1
−
ϕ
′
(
x
M
)
;
1
ψ
′
(
y
M
)
;
1
ω
′
(
z
M
)
}
;
{\displaystyle {\vec {b}}=\{{\frac {1}{-\phi '(x_{M})}};{\frac {1}{\psi '(y_{M})}};{\frac {1}{\omega '(z_{M})}}\};}
b
→
=
{
1
−
1
;
1
2
t
;
1
3
t
2
}
.
{\displaystyle {\vec {b}}=\{{\frac {1}{-1}};{\frac {1}{2t}};{\frac {1}{3t^{2}}}\}.}
Kitas pavyzdis, kreivės užrašytos parametriškai
ϕ
(
t
)
=
t
{\displaystyle \phi (t)=t}
,
ψ
(
t
)
=
t
1
2
{\displaystyle \psi (t)=t^{1 \over 2}}
,
ω
(
t
)
=
t
3
{\displaystyle \omega (t)=t^{3}}
, normalės vektorius taške
M
(
x
M
;
y
M
;
z
M
)
{\displaystyle M(x_{M};y_{M};z_{M})}
yra:
b
→
=
{
1
ϕ
′
(
x
M
)
;
1
−
ψ
′
(
y
M
)
;
1
ω
′
(
z
M
)
}
;
{\displaystyle {\vec {b}}=\{{\frac {1}{\phi '(x_{M})}};{\frac {1}{-\psi '(y_{M})}};{\frac {1}{\omega '(z_{M})}}\};}
b
→
=
{
1
1
;
1
−
1
2
t
;
1
3
t
2
}
;
{\displaystyle {\vec {b}}=\{{\frac {1}{1}};{\frac {1}{-{\frac {1}{2{\sqrt {t}}}}}};{\frac {1}{3t^{2}}}\};}
b
→
=
{
1
;
−
2
y
M
;
1
3
z
M
2
}
.
{\displaystyle {\vec {b}}=\{1;-2{\sqrt {y_{M}}};{\frac {1}{3z_{M}^{2}}}\}.}
Todėl galime užrašyti kreivės normalės lygtį:
{
x
−
x
M
=
t
±
ϕ
′
(
x
M
)
,
y
−
y
M
=
t
±
ψ
′
(
y
M
)
,
z
−
z
M
=
t
±
ω
′
(
z
M
)
;
{\displaystyle {\begin{cases}x-x_{M}={\frac {t}{\pm \phi '(x_{M})}},&\\y-y_{M}={\frac {t}{\pm \psi '(y_{M})}},&\\z-z_{M}={\frac {t}{\pm \omega '(z_{M})}};&\end{cases}}}
arba
x
−
x
M
1
±
ϕ
′
(
x
M
)
=
y
−
y
M
1
±
ψ
′
(
y
M
)
=
z
−
z
M
1
±
ω
′
(
z
M
)
,
{\displaystyle {\frac {x-x_{M}}{\frac {1}{\pm \phi '(x_{M})}}}={\frac {y-y_{M}}{\frac {1}{\pm \psi '(y_{M})}}}={\frac {z-z_{M}}{\frac {1}{\pm \omega '(z_{M})}}},}
±
(
x
−
x
M
)
ϕ
′
(
x
M
)
=
±
(
y
−
y
M
)
ψ
′
(
y
M
)
=
±
(
z
−
z
M
)
ω
′
(
z
M
)
.
{\displaystyle \pm (x-x_{M})\phi '(x_{M})=\pm (y-y_{M})\psi '(y_{M})=\pm (z-z_{M})\omega '(z_{M}).}
Turime lygčių sistemą:
{
±
(
x
−
x
M
)
ϕ
′
(
x
M
)
=
±
(
y
−
y
M
)
ψ
′
(
y
M
)
=
±
(
z
−
z
M
)
ω
′
(
z
M
)
,
(
x
−
x
M
)
2
+
(
y
−
y
M
)
2
+
(
z
−
z
M
)
2
=
1
K
2
;
{\displaystyle {\begin{cases}\pm (x-x_{M})\phi '(x_{M})=\pm (y-y_{M})\psi '(y_{M})=\pm (z-z_{M})\omega '(z_{M}),&\\(x-x_{M})^{2}+(y-y_{M})^{2}+(z-z_{M})^{2}={\frac {1}{K^{2}}};&\end{cases}}}
Gauname, kad
y
−
y
M
=
±
ϕ
′
(
x
M
)
(
x
−
x
M
)
±
ψ
′
(
y
M
)
;
{\displaystyle y-y_{M}={\frac {\pm \phi '(x_{M})(x-x_{M})}{\pm \psi '(y_{M})}};}
z
−
z
M
=
±
ϕ
′
(
x
M
)
(
x
−
x
M
)
±
ω
′
(
z
M
)
.
{\displaystyle z-z_{M}={\frac {\pm \phi '(x_{M})(x-x_{M})}{\pm \omega '(z_{M})}}.}
Įstatę į antrą sistemos lygtį gauname:
(
x
−
x
M
)
2
+
(
±
ϕ
′
(
x
M
)
(
x
−
x
M
)
±
ψ
′
(
y
M
)
)
2
+
(
±
ϕ
′
(
x
M
)
(
x
−
x
M
)
±
ω
′
(
z
M
)
)
2
=
1
K
2
,
{\displaystyle (x-x_{M})^{2}+\left({\frac {\pm \phi '(x_{M})(x-x_{M})}{\pm \psi '(y_{M})}}\right)^{2}+\left({\frac {\pm \phi '(x_{M})(x-x_{M})}{\pm \omega '(z_{M})}}\right)^{2}={\frac {1}{K^{2}}},}
(
x
−
x
M
)
2
+
(
ϕ
′
(
x
M
)
)
2
(
x
−
x
M
)
2
(
ψ
′
(
y
M
)
)
2
+
(
ϕ
′
(
x
M
)
)
2
(
x
−
x
M
)
2
(
ω
′
(
z
M
)
)
2
=
1
K
2
,
{\displaystyle (x-x_{M})^{2}+{\frac {(\phi '(x_{M}))^{2}(x-x_{M})^{2}}{(\psi '(y_{M}))^{2}}}+{\frac {(\phi '(x_{M}))^{2}(x-x_{M})^{2}}{(\omega '(z_{M}))^{2}}}={\frac {1}{K^{2}}},}
(
x
−
x
M
)
2
(
1
+
(
ϕ
′
(
x
M
)
)
2
(
ψ
′
(
y
M
)
)
2
+
(
ϕ
′
(
x
M
)
)
2
(
ω
′
(
z
M
)
)
2
)
=
R
2
.
{\displaystyle (x-x_{M})^{2}\left(1+{\frac {(\phi '(x_{M}))^{2}}{(\psi '(y_{M}))^{2}}}+{\frac {(\phi '(x_{M}))^{2}}{(\omega '(z_{M}))^{2}}}\right)=R^{2}.}
Išsprendus kvadratinę lygtį
(
x
2
−
2
x
x
M
+
x
M
2
)
(
1
+
(
ϕ
′
(
x
M
)
)
2
(
ψ
′
(
y
M
)
)
2
+
(
ϕ
′
(
x
M
)
)
2
(
ω
′
(
z
M
)
)
2
)
−
R
2
=
0
,
{\displaystyle (x^{2}-2xx_{M}+x_{M}^{2})\left(1+{\frac {(\phi '(x_{M}))^{2}}{(\psi '(y_{M}))^{2}}}+{\frac {(\phi '(x_{M}))^{2}}{(\omega '(z_{M}))^{2}}}\right)-R^{2}=0,}
x
2
(
1
+
(
ϕ
′
(
x
M
)
)
2
(
ψ
′
(
y
M
)
)
2
+
(
ϕ
′
(
x
M
)
)
2
(
ω
′
(
z
M
)
)
2
)
−
2
x
x
M
(
1
+
(
ϕ
′
(
x
M
)
)
2
(
ψ
′
(
y
M
)
)
2
+
(
ϕ
′
(
x
M
)
)
2
(
ω
′
(
z
M
)
)
2
)
+
x
M
2
(
1
+
(
ϕ
′
(
x
M
)
)
2
(
ψ
′
(
y
M
)
)
2
+
(
ϕ
′
(
x
M
)
)
2
(
ω
′
(
z
M
)
)
2
)
−
R
2
=
0
,
{\displaystyle x^{2}\left(1+{\frac {(\phi '(x_{M}))^{2}}{(\psi '(y_{M}))^{2}}}+{\frac {(\phi '(x_{M}))^{2}}{(\omega '(z_{M}))^{2}}}\right)-2xx_{M}\left(1+{\frac {(\phi '(x_{M}))^{2}}{(\psi '(y_{M}))^{2}}}+{\frac {(\phi '(x_{M}))^{2}}{(\omega '(z_{M}))^{2}}}\right)+x_{M}^{2}\left(1+{\frac {(\phi '(x_{M}))^{2}}{(\psi '(y_{M}))^{2}}}+{\frac {(\phi '(x_{M}))^{2}}{(\omega '(z_{M}))^{2}}}\right)-R^{2}=0,}
surandama kreivio centro
C
(
x
C
;
y
C
;
z
C
)
{\displaystyle C(x_{C};y_{C};z_{C})}
koordinatė
x
C
.
{\displaystyle x_{C}.}
Analogiškai surandama ir
y
C
{\displaystyle y_{C}}
kordinatė išsprendus lygtį:
y
2
(
1
+
(
ψ
′
(
y
M
)
)
2
(
ϕ
′
(
x
M
)
)
2
+
(
ψ
′
(
y
M
)
)
2
(
ω
′
(
z
M
)
)
2
)
−
2
y
y
M
(
1
+
(
ψ
′
(
y
M
)
)
2
(
ϕ
′
(
x
M
)
)
2
+
(
ψ
′
(
y
M
)
)
2
(
ω
′
(
z
M
)
)
2
)
+
y
M
2
(
1
+
(
ψ
′
(
y
M
)
)
2
(
ϕ
′
(
x
M
)
)
2
+
(
ψ
′
(
y
M
)
)
2
(
ω
′
(
z
M
)
)
2
)
−
R
2
=
0.
{\displaystyle y^{2}\left(1+{\frac {(\psi '(y_{M}))^{2}}{(\phi '(x_{M}))^{2}}}+{\frac {(\psi '(y_{M}))^{2}}{(\omega '(z_{M}))^{2}}}\right)-2yy_{M}\left(1+{\frac {(\psi '(y_{M}))^{2}}{(\phi '(x_{M}))^{2}}}+{\frac {(\psi '(y_{M}))^{2}}{(\omega '(z_{M}))^{2}}}\right)+y_{M}^{2}\left(1+{\frac {(\psi '(y_{M}))^{2}}{(\phi '(x_{M}))^{2}}}+{\frac {(\psi '(y_{M}))^{2}}{(\omega '(z_{M}))^{2}}}\right)-R^{2}=0.}
Tokiu pačiu principu surandama ir
z
C
{\displaystyle z_{C}}
koordinatė, išsprendžiant lygtį:
z
2
(
1
+
(
ω
′
(
z
M
)
)
2
(
ϕ
′
(
x
M
)
)
2
+
(
ω
′
(
z
M
)
)
2
(
ψ
′
(
y
M
)
)
2
)
−
2
z
z
M
(
1
+
(
ω
′
(
z
M
)
)
2
(
ϕ
′
(
x
M
)
)
2
+
(
ω
′
(
z
M
)
)
2
(
ψ
′
(
y
M
)
)
2
)
+
z
M
2
(
1
+
(
ω
′
(
z
M
)
)
2
(
ϕ
′
(
x
M
)
)
2
+
(
ω
′
(
z
M
)
)
2
(
ψ
′
(
y
M
)
)
2
)
−
R
2
=
0.
{\displaystyle z^{2}\left(1+{\frac {(\omega '(z_{M}))^{2}}{(\phi '(x_{M}))^{2}}}+{\frac {(\omega '(z_{M}))^{2}}{(\psi '(y_{M}))^{2}}}\right)-2zz_{M}\left(1+{\frac {(\omega '(z_{M}))^{2}}{(\phi '(x_{M}))^{2}}}+{\frac {(\omega '(z_{M}))^{2}}{(\psi '(y_{M}))^{2}}}\right)+z_{M}^{2}\left(1+{\frac {(\omega '(z_{M}))^{2}}{(\phi '(x_{M}))^{2}}}+{\frac {(\omega '(z_{M}))^{2}}{(\psi '(y_{M}))^{2}}}\right)-R^{2}=0.}
Norint surasti parametrines erdvinės kreivės evoliutės lygtis grįžtame prie sistemos:
{
±
(
x
−
x
M
)
ϕ
′
(
x
M
)
=
±
(
y
−
y
M
)
ψ
′
(
y
M
)
=
±
(
z
−
z
M
)
ω
′
(
z
M
)
,
(
x
−
x
M
)
2
+
(
y
−
y
M
)
2
+
(
z
−
z
M
)
2
=
1
K
2
.
{\displaystyle {\begin{cases}\pm (x-x_{M})\phi '(x_{M})=\pm (y-y_{M})\psi '(y_{M})=\pm (z-z_{M})\omega '(z_{M}),&\\(x-x_{M})^{2}+(y-y_{M})^{2}+(z-z_{M})^{2}={\frac {1}{K^{2}}}.&\end{cases}}}
Iš kurios turime:
(
x
−
x
M
)
2
+
(
±
ϕ
′
(
x
M
)
(
x
−
x
M
)
±
ψ
′
(
y
M
)
)
2
+
(
±
ϕ
′
(
x
M
)
(
x
−
x
M
)
±
ω
′
(
z
M
)
)
2
=
1
K
2
,
{\displaystyle (x-x_{M})^{2}+\left({\frac {\pm \phi '(x_{M})(x-x_{M})}{\pm \psi '(y_{M})}}\right)^{2}+\left({\frac {\pm \phi '(x_{M})(x-x_{M})}{\pm \omega '(z_{M})}}\right)^{2}={\frac {1}{K^{2}}},}
(
x
−
x
M
)
2
+
(
ϕ
′
(
x
M
)
)
2
(
x
−
x
M
)
2
(
ψ
′
(
y
M
)
)
2
+
(
ϕ
′
(
x
M
)
)
2
(
x
−
x
M
)
2
(
ω
′
(
z
M
)
)
2
=
1
K
2
,
{\displaystyle (x-x_{M})^{2}+{\frac {(\phi '(x_{M}))^{2}(x-x_{M})^{2}}{(\psi '(y_{M}))^{2}}}+{\frac {(\phi '(x_{M}))^{2}(x-x_{M})^{2}}{(\omega '(z_{M}))^{2}}}={\frac {1}{K^{2}}},}
(
x
−
x
M
)
2
(
1
+
(
ϕ
′
(
x
M
)
)
2
(
ψ
′
(
y
M
)
)
2
+
(
ϕ
′
(
x
M
)
)
2
(
ω
′
(
z
M
)
)
2
)
=
R
2
;
{\displaystyle (x-x_{M})^{2}\left(1+{\frac {(\phi '(x_{M}))^{2}}{(\psi '(y_{M}))^{2}}}+{\frac {(\phi '(x_{M}))^{2}}{(\omega '(z_{M}))^{2}}}\right)=R^{2};}
(
x
−
x
M
)
2
=
R
2
(
1
+
(
ϕ
′
(
x
M
)
)
2
(
ψ
′
(
y
M
)
)
2
+
(
ϕ
′
(
x
M
)
)
2
(
ω
′
(
z
M
)
)
2
)
,
{\displaystyle (x-x_{M})^{2}={\frac {R^{2}}{\left(1+{\frac {(\phi '(x_{M}))^{2}}{(\psi '(y_{M}))^{2}}}+{\frac {(\phi '(x_{M}))^{2}}{(\omega '(z_{M}))^{2}}}\right)}},}
x
−
x
M
=
±
R
2
(
1
+
(
ϕ
′
(
x
M
)
)
2
(
ψ
′
(
y
M
)
)
2
+
(
ϕ
′
(
x
M
)
)
2
(
ω
′
(
z
M
)
)
2
)
,
{\displaystyle x-x_{M}=\pm {\sqrt {\frac {R^{2}}{\left(1+{\frac {(\phi '(x_{M}))^{2}}{(\psi '(y_{M}))^{2}}}+{\frac {(\phi '(x_{M}))^{2}}{(\omega '(z_{M}))^{2}}}\right)}}},}
x
=
x
M
±
R
(
1
+
(
ϕ
′
(
x
M
)
)
2
(
ψ
′
(
y
M
)
)
2
+
(
ϕ
′
(
x
M
)
)
2
(
ω
′
(
z
M
)
)
2
)
,
{\displaystyle x=x_{M}\pm {\frac {R}{\sqrt {\left(1+{\frac {(\phi '(x_{M}))^{2}}{(\psi '(y_{M}))^{2}}}+{\frac {(\phi '(x_{M}))^{2}}{(\omega '(z_{M}))^{2}}}\right)}}},}
x
C
=
x
M
±
1
K
(
1
+
(
ϕ
′
(
x
M
)
)
2
(
ψ
′
(
y
M
)
)
2
+
(
ϕ
′
(
x
M
)
)
2
(
ω
′
(
z
M
)
)
2
)
=
{\displaystyle x_{C}=x_{M}\pm {\frac {1}{K{\sqrt {\left(1+{\frac {(\phi '(x_{M}))^{2}}{(\psi '(y_{M}))^{2}}}+{\frac {(\phi '(x_{M}))^{2}}{(\omega '(z_{M}))^{2}}}\right)}}}}=}
=
x
M
±
(
(
ϕ
′
(
x
M
)
)
2
+
(
ψ
′
(
y
M
)
)
2
+
(
ω
′
(
z
M
)
)
2
)
3
2
(
ψ
′
(
y
M
)
ω
″
(
z
M
)
−
ω
′
(
z
M
)
ψ
″
(
y
M
)
)
2
+
(
ϕ
′
(
x
M
)
ω
″
(
z
M
)
−
ω
′
(
z
M
)
ϕ
″
(
x
M
)
)
2
+
(
ϕ
′
(
x
M
)
ψ
″
(
y
M
)
−
ψ
′
(
y
M
)
ϕ
″
(
x
M
)
)
2
(
1
+
(
ϕ
′
(
x
M
)
)
2
(
ψ
′
(
y
M
)
)
2
+
(
ϕ
′
(
x
M
)
)
2
(
ω
′
(
z
M
)
)
2
)
;
{\displaystyle =x_{M}\pm {\frac {((\phi '(x_{M}))^{2}+(\psi '(y_{M}))^{2}+(\omega '(z_{M}))^{2})^{3 \over 2}}{{\sqrt {(\psi '(y_{M})\omega ''(z_{M})-\omega '(z_{M})\psi ''(y_{M}))^{2}+(\phi '(x_{M})\omega ''(z_{M})-\omega '(z_{M})\phi ''(x_{M}))^{2}+(\phi '(x_{M})\psi ''(y_{M})-\psi '(y_{M})\phi ''(x_{M}))^{2}}}{\sqrt {\left(1+{\frac {(\phi '(x_{M}))^{2}}{(\psi '(y_{M}))^{2}}}+{\frac {(\phi '(x_{M}))^{2}}{(\omega '(z_{M}))^{2}}}\right)}}}};}
α
(
t
)
=
x
±
1
K
(
1
+
(
ϕ
′
)
2
(
ψ
′
)
2
+
(
ϕ
′
)
2
(
ω
′
)
2
)
=
x
±
(
(
ϕ
′
)
2
+
(
ψ
′
)
2
+
(
ω
′
)
2
)
3
2
(
ψ
′
ω
″
−
ω
′
ψ
″
)
2
+
(
ϕ
′
ω
″
−
ω
′
ϕ
″
)
2
+
(
ϕ
′
ψ
″
−
ψ
′
ϕ
″
)
2
(
1
+
(
ϕ
′
)
2
(
ψ
′
)
2
+
(
ϕ
′
)
2
(
ω
′
)
2
)
.
{\displaystyle \alpha (t)=x\pm {\frac {1}{K{\sqrt {\left(1+{\frac {(\phi ')^{2}}{(\psi ')^{2}}}+{\frac {(\phi ')^{2}}{(\omega ')^{2}}}\right)}}}}=x\pm {\frac {\frac {((\phi ')^{2}+(\psi ')^{2}+(\omega ')^{2})^{3 \over 2}}{\sqrt {(\psi '\omega ''-\omega '\psi '')^{2}+(\phi '\omega ''-\omega '\phi '')^{2}+(\phi '\psi ''-\psi '\phi '')^{2}}}}{\sqrt {\left(1+{\frac {(\phi ')^{2}}{(\psi ')^{2}}}+{\frac {(\phi ')^{2}}{(\omega ')^{2}}}\right)}}}.}
Ar pliuso ar minuso ženklą pasirinkti, reikia vadovautis tuom, kad erdvinės kreivės normalės vektorius
b
→
=
{
1
±
ϕ
′
(
x
M
)
;
1
±
ψ
′
(
y
M
)
;
1
±
ω
′
(
z
M
)
}
{\displaystyle {\vec {b}}=\{{\frac {1}{\pm \phi '(x_{M})}};{\frac {1}{\pm \psi '(y_{M})}};{\frac {1}{\pm \omega '(z_{M})}}\}}
būtų tos pačios krypties arba bent jau lygiagretus vektoriui
c
→
=
{
x
C
−
x
M
;
y
C
−
y
M
;
z
C
−
z
M
}
.
{\displaystyle {\vec {c}}=\{x_{C}-x_{M};y_{C}-y_{M};z_{C}-z_{M}\}.}
Jei lygiagretumo sąlyga išpildyta, bet krypties sąlyga neišpildyta, tuomet turėtume gauti išverstos evoliutės lygtį, kuri bus aplink kreivę, o ne kreivės viduje. Kad gauti evoliutės lygtį kuo panašesnę į plokščios (dvimatės) evoliutės lygtį, ir lygiagretumo sąlyga, ir krypties sąlyga turi būti išpildyta (kai abu vektoriai yra tos pačios krypties tuomet
|
R
2
−
R
1
|
=
|
s
2
−
s
1
|
{\displaystyle |R_{2}-R_{1}|=|s_{2}-s_{1}|}
; čia
|
s
2
−
s
1
|
{\displaystyle |s_{2}-s_{1}|}
yra lanko ilgis evoliutės iš vieno centro taško iki kito centro taško).
Analogiškai turime ir parametrinę y evoliutės išraišką:
y
C
=
y
M
±
1
K
(
1
+
(
ψ
′
(
y
M
)
)
2
(
ϕ
′
(
x
M
)
)
2
+
(
ψ
′
(
y
M
)
)
2
(
ω
′
(
z
M
)
)
2
)
;
{\displaystyle y_{C}=y_{M}\pm {\frac {1}{K{\sqrt {\left(1+{\frac {(\psi '(y_{M}))^{2}}{(\phi '(x_{M}))^{2}}}+{\frac {(\psi '(y_{M}))^{2}}{(\omega '(z_{M}))^{2}}}\right)}}}};}
β
(
t
)
=
y
±
1
K
(
1
+
(
ψ
′
)
2
(
ϕ
′
)
2
+
(
ψ
′
)
2
(
ω
′
)
2
)
.
{\displaystyle \beta (t)=y\pm {\frac {1}{K{\sqrt {\left(1+{\frac {(\psi ')^{2}}{(\phi ')^{2}}}+{\frac {(\psi ')^{2}}{(\omega ')^{2}}}\right)}}}}.}
Taip pat surandama ir parametrinė z evoliutės lygties koordinatė:
z
C
=
z
M
±
1
K
(
1
+
(
ω
′
(
z
M
)
)
2
(
ϕ
′
(
x
M
)
)
2
+
(
ω
′
(
z
M
)
)
2
(
ψ
′
(
y
M
)
)
2
)
;
{\displaystyle z_{C}=z_{M}\pm {\frac {1}{K{\sqrt {\left(1+{\frac {(\omega '(z_{M}))^{2}}{(\phi '(x_{M}))^{2}}}+{\frac {(\omega '(z_{M}))^{2}}{(\psi '(y_{M}))^{2}}}\right)}}}};}
γ
(
t
)
=
z
±
1
K
(
1
+
(
ω
′
)
2
(
ϕ
′
)
2
+
(
ω
′
)
2
(
ψ
′
)
2
)
.
{\displaystyle \gamma (t)=z\pm {\frac {1}{K{\sqrt {\left(1+{\frac {(\omega ')^{2}}{(\phi ')^{2}}}+{\frac {(\omega ')^{2}}{(\psi ')^{2}}}\right)}}}}.}
Taškas
C
(
x
C
;
y
C
;
z
C
)
{\displaystyle C(x_{C};y_{C};z_{C})}
yra kreivės kreivio centro taškas, kuris su tašku
M
(
x
M
;
y
M
;
z
M
)
{\displaystyle M(x_{M};y_{M};z_{M})}
sudaro spindulį R .
padalinę vektoriaus narius
M
C
→
{\displaystyle {\vec {MC}}}
iš vektoriaus
b
→
{\displaystyle {\vec {b}}}
narių turėtume gauti tas pačias x , y , z reikšmes gautame vektoriuje, taigi
−
2823.65612
−
5
−
2
3
=
2818.65612
⋅
3
2
=
4227.98418
,
{\displaystyle {\frac {-2823.65612-5}{-{\frac {2}{3}}}}=2818.65612\cdot {\frac {3}{2}}=4227.98418,}
166.432806
−
25
1
30
=
141.432806
⋅
30
=
4242.98418
,
{\displaystyle {\frac {166.432806-25}{\frac {1}{30}}}=141.432806\cdot 30=4242.98418,}
143.3175405
−
125
1
225
=
18.3175405
⋅
225
=
4121.446613
{\displaystyle {\frac {143.3175405-125}{\frac {1}{225}}}=18.3175405\cdot 225=4121.446613}
kažkodėl gavome tik apytiksiai vienodas reikšmes (su kitomis
x
C
{\displaystyle x_{C}}
,
y
C
{\displaystyle y_{C}}
,
z
C
{\displaystyle z_{C}}
reikšmėmis jos dar mažiau bus panašios, ypač su kita
z
C
{\displaystyle z_{C}}
reikšme) ir keistą sutapimą, kad liekanos vienodos (.98418).
c) Erdvinės evoliutės parametrinės lygtys yra (bent jau, kai t kinta nuo 0 iki
∞
{\displaystyle \infty }
):
α
(
t
)
=
ϕ
(
t
)
−
1
K
1
+
(
ϕ
′
(
t
)
)
2
4
(
ψ
′
(
t
)
)
2
+
(
ϕ
′
(
t
)
)
2
4
(
ω
′
(
t
)
)
2
=
t
−
1
K
1
+
1
2
4
(
2
t
)
2
+
1
2
4
(
3
t
2
)
2
=
{\displaystyle \alpha (t)=\phi (t)-{\frac {1}{K{\sqrt {1+{\frac {(\phi '(t))^{2}}{4(\psi '(t))^{2}}}+{\frac {(\phi '(t))^{2}}{4(\omega '(t))^{2}}}}}}}=t-{\frac {1}{K{\sqrt {1+{\frac {1^{2}}{4(2t)^{2}}}+{\frac {1^{2}}{4(3t^{2})^{2}}}}}}}=}
=
t
−
1
K
1
+
1
4
⋅
4
t
2
+
1
4
⋅
9
t
4
=
t
−
1
36
t
4
+
36
t
2
+
4
(
1
+
4
t
2
+
9
t
4
)
3
2
1
+
1
16
t
2
+
1
36
t
4
=
{\displaystyle =t-{\frac {1}{K{\sqrt {1+{\frac {1}{4\cdot 4t^{2}}}+{\frac {1}{4\cdot 9t^{4}}}}}}}=t-{\frac {1}{{\frac {\sqrt {36t^{4}+36t^{2}+4}}{(1+4t^{2}+9t^{4})^{3 \over 2}}}{\sqrt {1+{\frac {1}{16t^{2}}}+{\frac {1}{36t^{4}}}}}}}=}
=
t
−
1
36
t
4
+
36
t
2
+
4
(
1
+
4
t
2
+
9
t
4
)
3
2
36
t
4
+
4
t
2
+
1
36
t
4
=
t
−
1
36
t
4
+
36
t
2
+
4
(
1
+
4
t
2
+
9
t
4
)
3
27
t
4
36
t
4
+
9
t
4
+
4
t
2
+
1
36
t
4
=
{\displaystyle =t-{\frac {1}{{\frac {\sqrt {36t^{4}+36t^{2}+4}}{(1+4t^{2}+9t^{4})^{3 \over 2}}}{\sqrt {\frac {36t^{4}+4t^{2}+1}{36t^{4}}}}}}=t-{\frac {1}{{\frac {\sqrt {36t^{4}+36t^{2}+4}}{\sqrt {(1+4t^{2}+9t^{4})^{3}}}}{\sqrt {{\frac {27t^{4}}{36t^{4}}}+{\frac {9t^{4}+4t^{2}+1}{36t^{4}}}}}}}=}
=
t
−
1
36
t
4
+
36
t
2
+
4
(
1
+
4
t
2
+
9
t
4
)
2
3
4
(
1
+
4
t
2
+
9
t
4
)
+
1
36
t
4
=
t
−
1
36
t
4
+
36
t
2
+
4
1
+
4
t
2
+
9
t
4
3
⋅
36
t
4
+
4
(
1
+
4
t
2
+
9
t
4
)
4
(
1
+
4
t
2
+
9
t
4
)
⋅
36
t
4
=
{\displaystyle =t-{\frac {1}{{\frac {\sqrt {36t^{4}+36t^{2}+4}}{\sqrt {(1+4t^{2}+9t^{4})^{2}}}}{\sqrt {{\frac {3}{4(1+4t^{2}+9t^{4})}}+{\frac {1}{36t^{4}}}}}}}=t-{\frac {1}{{\frac {\sqrt {36t^{4}+36t^{2}+4}}{1+4t^{2}+9t^{4}}}{\sqrt {\frac {3\cdot 36t^{4}+4(1+4t^{2}+9t^{4})}{4(1+4t^{2}+9t^{4})\cdot 36t^{4}}}}}}=}
=
t
−
12
t
2
(
1
+
4
t
2
+
9
t
4
)
1
+
4
t
2
+
9
t
4
36
t
4
+
36
t
2
+
4
3
⋅
36
t
4
+
4
(
1
+
4
t
2
+
9
t
4
)
=
t
−
12
t
2
(
1
+
4
t
2
+
9
t
4
)
3
2
36
t
4
+
36
t
2
+
4
4
+
16
t
2
+
144
t
4
=
{\displaystyle =t-{\frac {12t^{2}(1+4t^{2}+9t^{4}){\sqrt {1+4t^{2}+9t^{4}}}}{{\sqrt {36t^{4}+36t^{2}+4}}{\sqrt {3\cdot 36t^{4}+4(1+4t^{2}+9t^{4})}}}}=t-{\frac {12t^{2}(1+4t^{2}+9t^{4})^{3 \over 2}}{{\sqrt {36t^{4}+36t^{2}+4}}{\sqrt {4+16t^{2}+144t^{4}}}}}=}
=
t
−
3
t
2
(
1
+
4
t
2
+
9
t
4
)
3
2
9
t
4
+
9
t
2
+
1
1
+
4
t
2
+
36
t
4
;
{\displaystyle =t-{\frac {3t^{2}(1+4t^{2}+9t^{4})^{3 \over 2}}{{\sqrt {9t^{4}+9t^{2}+1}}{\sqrt {1+4t^{2}+36t^{4}}}}};}
β
(
t
)
=
ψ
(
t
)
+
1
K
4
(
ψ
′
(
t
)
)
2
(
ϕ
′
(
t
)
)
2
+
1
+
(
ψ
′
(
t
)
)
2
(
ω
′
(
t
)
)
2
;
{\displaystyle \beta (t)=\psi (t)+{\frac {1}{K{\sqrt {{\frac {4(\psi '(t))^{2}}{(\phi '(t))^{2}}}+1+{\frac {(\psi '(t))^{2}}{(\omega '(t))^{2}}}}}}};}
γ
(
t
)
=
ω
(
t
)
+
1
K
4
(
ω
′
(
t
)
)
2
(
ϕ
′
(
t
)
)
2
+
(
ω
′
(
t
)
)
2
(
ψ
′
(
t
)
)
2
+
1
.
{\displaystyle \gamma (t)=\omega (t)+{\frac {1}{K{\sqrt {{\frac {4(\omega '(t))^{2}}{(\phi '(t))^{2}}}+{\frac {(\omega '(t))^{2}}{(\psi '(t))^{2}}}+1}}}}.}