Taikydami Gryno formulę, apskaičiuokime kreivinį integralą
∫
L
x
y
d
x
+
(
x
2
+
y
2
)
d
y
,
{\displaystyle \int _{L}xy\mathbf {d} x+(x^{2}+y^{2})\mathbf {d} y,}
kai L - apskritimas
x
2
+
y
2
=
a
x
{\displaystyle x^{2}+y^{2}=ax}
(a>0), apeinamas teigiama kryptimi (prieš laikrodžio rodyklę).
Kadangi skritulyje
x
2
+
y
2
≤
a
x
{\displaystyle x^{2}+y^{2}\leq ax}
funkcijos
P
(
x
,
y
)
=
x
y
{\displaystyle P(x,y)=xy}
ir
Q
(
x
,
y
)
=
x
2
+
y
2
{\displaystyle Q(x,y)=x^{2}+y^{2}}
bei jų dalinės išvestinės
∂
P
∂
y
=
x
{\displaystyle {\partial P \over \partial y}=x}
ir
∂
Q
∂
x
=
2
x
{\displaystyle {\partial Q \over \partial x}=2x}
yra tolydžios, tai duotajam kreiviniam integralui galima taikyti Gryno formulę.
Turime:
∫
L
x
y
d
x
+
(
x
2
+
y
2
)
d
y
=
∬
D
(
2
x
−
x
)
d
x
d
y
=
∬
D
x
d
x
d
y
.
{\displaystyle \int _{L}xy\;dx+(x^{2}+y^{2})dy=\iint _{D}(2x-x)\;dx\;dy=\iint _{D}x\;dx\;dy.}
Randame apskritimo y išraišką:
x
2
+
y
2
=
a
x
,
{\displaystyle x^{2}+y^{2}=ax,}
y
2
=
a
x
−
x
2
,
{\displaystyle y^{2}=ax-x^{2},}
y
=
a
x
−
x
2
.
{\displaystyle y={\sqrt {ax-x^{2}}}.}
Randame y išvestinę, o paskui ir dy :
y
′
=
d
y
d
x
=
(
a
x
−
x
2
)
′
=
(
a
x
−
x
2
)
′
2
a
x
−
x
2
=
a
−
2
x
2
a
x
−
x
2
;
{\displaystyle y'={\frac {dy}{dx}}=({\sqrt {ax-x^{2}}})'={\frac {(ax-x^{2})'}{2{\sqrt {ax-x^{2}}}}}={\frac {a-2x}{2{\sqrt {ax-x^{2}}}}};}
d
y
=
a
−
2
x
2
a
x
−
x
2
d
x
.
{\displaystyle dy={\frac {a-2x}{2{\sqrt {ax-x^{2}}}}}\;dx.}
Apskritimo spindulys
R
=
a
2
,
{\displaystyle R={\frac {a}{2}},}
nes pavyzdžiui, kai
a
=
3
,
{\displaystyle a=3,}
tai
x
2
+
y
2
=
3
x
.
{\displaystyle x^{2}+y^{2}=3x.}
Žinome, kad šis apskritimas liečiasi koordinačių pradžios taške O (0; 0) ir kad ašis Ox dalina apskritimą pusiau. Vadinasi, kai
x
=
0
{\displaystyle x=0}
ir
y
=
0
,
{\displaystyle y=0,}
tai gauname teisingą lygybę
0
2
+
0
2
=
3
⋅
0.
{\displaystyle 0^{2}+0^{2}=3\cdot 0.}
Vadinasi taškas (0; 0) priklauso apskritimui
x
2
+
y
2
=
3
x
.
{\displaystyle x^{2}+y^{2}=3x.}
Kitas apskritimo taškas yra (3; 0), kuris yra ant Ox ašies. Įstačius taško (3; 0) koordinates į apskritimo lygtį
x
2
+
y
2
=
3
x
{\displaystyle x^{2}+y^{2}=3x}
gauname
3
2
+
0
2
=
3
⋅
3.
{\displaystyle 3^{2}+0^{2}=3\cdot 3.}
Žinome, kad taškas (3; 0) yra toliausias taškas ant Ox ašies. Todėl apskritimo
x
2
+
y
2
=
3
x
{\displaystyle x^{2}+y^{2}=3x}
spindulys yra
R
=
3
2
=
a
2
.
{\displaystyle R={\frac {3}{2}}={\frac {a}{2}}.}
Kadangi apskritimo
x
2
+
y
2
=
a
x
{\displaystyle x^{2}+y^{2}=ax}
spindulys yra
R
=
a
2
{\displaystyle R={\frac {a}{2}}}
ir Ox ašis dalina apskritimą per pusę, tai didžiausia y reikšmė gali būti
R
=
a
2
.
{\displaystyle R={\frac {a}{2}}.}
Vadinasi integravimas vyksta pirmame ir ketvirtame ketvirčiuose. Bet, kadangi, skritulio
x
2
+
y
2
≤
a
x
{\displaystyle x^{2}+y^{2}\leq ax}
plotas yra vienodas ketvirtame ketviryje kaip ir pirmame, tai užtenka apskaičiuoti skritulio plotą tik pirmame ketvirtyje, o paskui gautą plotą padauginti iš dviejų. Kad apskaičiuoti skritulio
x
2
+
y
2
≤
a
x
{\displaystyle x^{2}+y^{2}\leq ax}
plotą pirmame ketvirtyje, turime žinoti integravimo ribas. Nustatome, kad x kinta nuo 0 iki a, o y kinta nuo 0 iki
R
=
a
2
.
{\displaystyle R={\frac {a}{2}}.}
Taikydami Gryno formulę, integruojame (pasinaudodami internetiniu integratoriumi):
∬
D
x
d
x
d
y
=
2
∫
0
a
x
(
∫
0
a
x
−
x
2
d
y
)
d
x
=
2
∫
0
a
x
(
y
|
0
a
x
−
x
2
)
d
x
=
2
∫
0
a
x
a
x
−
x
2
d
x
=
{\displaystyle \iint _{D}xdxdy=2\int _{0}^{a}x(\int _{0}^{\sqrt {ax-x^{2}}}dy)dx=2\int _{0}^{a}x(y|_{0}^{\sqrt {ax-x^{2}}})dx=2\int _{0}^{a}x{\sqrt {ax-x^{2}}}dx=}
=
2
⋅
−
x
(
x
−
a
)
(
3
a
3
arctan
(
x
a
−
x
)
+
x
a
−
x
(
−
3
a
2
−
2
a
x
+
8
x
2
)
)
24
x
a
−
x
|
0
a
=
{\displaystyle =2\cdot {\frac {{\sqrt {-x(x-a)}}\left(3a^{3}\arctan \left({\frac {\sqrt {x}}{\sqrt {a-x}}}\right)+{\sqrt {x}}{\sqrt {a-x}}(-3a^{2}-2ax+8x^{2})\right)}{24{\sqrt {x}}{\sqrt {a-x}}}}|_{0}^{a}=}
=
3
a
3
arctan
(
x
a
−
x
)
+
x
a
−
x
(
−
3
a
2
−
2
a
x
+
8
x
2
)
12
|
0
a
=
{\displaystyle ={\frac {3a^{3}\arctan \left({\frac {\sqrt {x}}{\sqrt {a-x}}}\right)+{\sqrt {x}}{\sqrt {a-x}}(-3a^{2}-2ax+8x^{2})}{12}}|_{0}^{a}=}
=
3
a
3
arctan
(
a
a
−
a
)
+
a
a
−
a
(
−
3
a
2
−
2
a
⋅
a
+
8
a
2
)
12
−
3
a
3
arctan
(
0
a
−
0
)
+
0
a
−
0
(
−
3
a
2
−
2
a
⋅
0
+
8
⋅
0
2
)
12
=
{\displaystyle ={\frac {3a^{3}\arctan \left({\frac {\sqrt {a}}{\sqrt {a-a}}}\right)+{\sqrt {a}}{\sqrt {a-a}}(-3a^{2}-2a\cdot a+8a^{2})}{12}}-{\frac {3a^{3}\arctan \left({\frac {\sqrt {0}}{\sqrt {a-0}}}\right)+{\sqrt {0}}{\sqrt {a-0}}(-3a^{2}-2a\cdot 0+8\cdot 0^{2})}{12}}=}
=
3
a
3
arctan
a
0
12
−
3
a
3
arctan
0
a
12
=
3
a
3
arctan
(
error
)
12
−
3
a
3
arctan
(
0
)
12
=
{\displaystyle ={\frac {3a^{3}\arctan {\frac {\sqrt {a}}{0}}}{12}}-{\frac {3a^{3}\arctan {\frac {0}{\sqrt {a}}}}{12}}={\frac {3a^{3}\arctan({\text{error}})}{12}}-{\frac {3a^{3}\arctan(0)}{12}}=}
=
3
a
3
arctan
(
∞
)
12
−
3
a
3
⋅
0
12
=
3
a
3
⋅
π
2
12
−
0
=
3
a
3
⋅
π
24
=
a
3
π
8
.
{\displaystyle ={\frac {3a^{3}\arctan(\infty )}{12}}-{\frac {3a^{3}\cdot 0}{12}}={\frac {3a^{3}\cdot {\frac {\pi }{2}}}{12}}-0={\frac {3a^{3}\cdot \pi }{24}}={\frac {a^{3}\pi }{8}}.}
Pasitikriname (įstatydami y ir dy ir pasinaudodami internetiniu integratoriumi ):
∫
L
x
y
d
x
+
(
x
2
+
y
2
)
d
y
=
∫
L
x
a
x
−
x
2
d
x
+
(
x
2
+
(
a
x
−
x
2
)
2
)
a
−
2
x
2
a
x
−
x
2
d
x
=
{\displaystyle \int _{L}xy\;dx+(x^{2}+y^{2})dy=\int _{L}x{\sqrt {ax-x^{2}}}\;dx+(x^{2}+({\sqrt {ax-x^{2}}})^{2}){\frac {a-2x}{2{\sqrt {ax-x^{2}}}}}\;dx=}
=
2
∫
0
a
(
x
a
x
−
x
2
+
(
x
2
+
(
a
x
−
x
2
)
2
)
a
−
2
x
2
a
x
−
x
2
)
d
x
=
{\displaystyle =2\int _{0}^{a}\left(x{\sqrt {ax-x^{2}}}+(x^{2}+({\sqrt {ax-x^{2}}})^{2}){\frac {a-2x}{2{\sqrt {ax-x^{2}}}}}\right)dx=}
=
2
∫
0
a
(
x
a
x
−
x
2
+
(
x
2
+
a
x
−
x
2
)
a
−
2
x
2
a
x
−
x
2
)
d
x
=
{\displaystyle =2\int _{0}^{a}\left(x{\sqrt {ax-x^{2}}}+(x^{2}+ax-x^{2}){\frac {a-2x}{2{\sqrt {ax-x^{2}}}}}\right)dx=}
=
2
∫
0
a
(
x
a
x
−
x
2
+
a
x
(
a
−
2
x
)
2
a
x
−
x
2
)
d
x
=
{\displaystyle =2\int _{0}^{a}\left(x{\sqrt {ax-x^{2}}}+{\frac {ax(a-2x)}{2{\sqrt {ax-x^{2}}}}}\right)dx=}
=
2
∫
0
a
(
x
a
x
−
x
2
+
a
2
x
−
2
a
x
2
2
a
x
−
x
2
)
d
x
=
{\displaystyle =2\int _{0}^{a}\left(x{\sqrt {ax-x^{2}}}+{\frac {a^{2}x-2ax^{2}}{2{\sqrt {ax-x^{2}}}}}\right)dx=}
=
2
∫
0
a
2
x
(
a
x
−
x
2
)
+
a
2
x
−
2
a
x
2
2
a
x
−
x
2
d
x
=
{\displaystyle =2\int _{0}^{a}{\frac {2x(ax-x^{2})+a^{2}x-2ax^{2}}{2{\sqrt {ax-x^{2}}}}}dx=}
=
2
∫
0
a
2
a
x
2
−
2
x
3
+
a
2
x
−
2
a
x
2
2
a
x
−
x
2
d
x
=
{\displaystyle =2\int _{0}^{a}{\frac {2ax^{2}-2x^{3}+a^{2}x-2ax^{2}}{2{\sqrt {ax-x^{2}}}}}dx=}
=
∫
0
a
−
2
x
3
+
a
2
x
a
x
−
x
2
d
x
=
∫
0
a
x
(
a
2
−
2
x
2
)
a
x
−
x
2
d
x
=
{\displaystyle =\int _{0}^{a}{\frac {-2x^{3}+a^{2}x}{\sqrt {ax-x^{2}}}}dx=\int _{0}^{a}{\frac {x(a^{2}-2x^{2})}{\sqrt {ax-x^{2}}}}dx=}
=
1
3
a
x
−
x
2
(
−
3
a
2
+
4
a
x
+
2
x
2
)
|
0
a
=
{\displaystyle ={\frac {1}{3}}{\sqrt {ax-x^{2}}}(-3a^{2}+4ax+2x^{2})|_{0}^{a}=}
=
1
3
a
⋅
a
−
a
2
(
−
3
a
2
+
4
a
⋅
a
+
2
a
2
)
−
1
3
a
⋅
0
−
0
2
(
−
3
a
2
+
4
a
⋅
0
+
2
⋅
0
2
)
=
{\displaystyle ={\frac {1}{3}}{\sqrt {a\cdot a-a^{2}}}(-3a^{2}+4a\cdot a+2a^{2})-{\frac {1}{3}}{\sqrt {a\cdot 0-0^{2}}}(-3a^{2}+4a\cdot 0+2\cdot 0^{2})=}
=
1
3
0
(
−
3
a
2
+
4
a
2
+
2
a
2
)
−
1
3
0
(
−
3
a
2
+
0
+
0
)
=
0
−
0
=
0.
{\displaystyle ={\frac {1}{3}}{\sqrt {0}}(-3a^{2}+4a^{2}+2a^{2})-{\frac {1}{3}}{\sqrt {0}}(-3a^{2}+0+0)=0-0=0.}
Pastaba, kad taip gauname dalyba iš nulio ir neįmanoma vietomis išintegruoti įstatant a arba 0. Bet gauname kažką panašesnio į teisingą atsakymą:
=
∫
0
a
−
2
x
3
+
a
2
x
a
x
−
x
2
d
x
=
{\displaystyle =\int _{0}^{a}{\frac {-2x^{3}+a^{2}x}{\sqrt {ax-x^{2}}}}dx=}
=
x
(
3
a
3
+
7
a
2
x
−
2
a
x
2
−
8
x
3
)
−
3
a
3
x
a
−
x
arctan
x
a
−
x
12
−
x
(
x
−
a
)
|
0
a
=
{\displaystyle ={\frac {x(3a^{3}+7a^{2}x-2ax^{2}-8x^{3})-3a^{3}{\sqrt {x}}{\sqrt {a-x}}\arctan {\frac {\sqrt {x}}{\sqrt {a-x}}}}{12{\sqrt {-x(x-a)}}}}|_{0}^{a}=}
=
(
x
(
3
a
3
+
7
a
2
x
−
2
a
x
2
−
8
x
3
)
12
x
(
a
−
x
)
−
3
a
3
x
(
a
−
x
)
arctan
x
a
−
x
12
x
(
a
−
x
)
)
|
0
a
=
{\displaystyle =\left({\frac {x(3a^{3}+7a^{2}x-2ax^{2}-8x^{3})}{12{\sqrt {x(a-x)}}}}-{\frac {3a^{3}{\sqrt {x(a-x)}}\arctan {\frac {\sqrt {x}}{\sqrt {a-x}}}}{12{\sqrt {x(a-x)}}}}\right)|_{0}^{a}=}
=
(
x
(
3
a
3
+
7
a
2
x
−
2
a
x
2
−
8
x
3
)
12
x
(
a
−
x
)
−
3
a
3
arctan
x
a
−
x
12
)
|
0
a
=
{\displaystyle =\left({\frac {x(3a^{3}+7a^{2}x-2ax^{2}-8x^{3})}{12{\sqrt {x(a-x)}}}}-{\frac {3a^{3}\arctan {\frac {\sqrt {x}}{\sqrt {a-x}}}}{12}}\right)|_{0}^{a}=}
=
(
x
(
3
a
3
+
7
a
2
x
−
2
a
x
2
−
8
x
3
)
12
a
−
x
−
a
3
arctan
x
a
−
x
4
)
|
0
a
=
{\displaystyle =\left({\frac {{\sqrt {x}}(3a^{3}+7a^{2}x-2ax^{2}-8x^{3})}{12{\sqrt {a-x}}}}-{\frac {a^{3}\arctan {\frac {\sqrt {x}}{\sqrt {a-x}}}}{4}}\right)|_{0}^{a}=}
=
(
x
(
7
a
2
x
−
2
a
x
2
−
5
x
3
)
a
−
x
12
(
a
−
x
)
−
a
3
arctan
x
a
−
x
4
)
|
0
a
.
{\displaystyle =\left({\frac {{\sqrt {x}}(7a^{2}x-2ax^{2}-5x^{3}){\sqrt {a-x}}}{12(a-x)}}-{\frac {a^{3}\arctan {\frac {\sqrt {x}}{\sqrt {a-x}}}}{4}}\right)|_{0}^{a}.}
Toliau pasinaudojame internetiniu polinomų dalikliu parinkę
a
=
3
{\displaystyle a=3}
gauname
(
7
a
2
x
−
2
a
x
2
−
5
x
3
)
/
(
a
−
x
)
=
(
−
5
x
3
−
6
x
2
+
63
x
)
/
(
−
x
+
3
)
=
5
x
2
+
21
x
.
{\displaystyle (7a^{2}x-2ax^{2}-5x^{3})/(a-x)=(-5x^{3}-6x^{2}+63x)/(-x+3)=5x^{2}+21x.}
Toliau integruojame:
(
x
(
7
a
2
x
−
2
a
x
2
−
5
x
3
)
a
−
x
12
(
a
−
x
)
−
a
3
arctan
x
a
−
x
4
)
|
0
a
=
{\displaystyle \left({\frac {{\sqrt {x}}(7a^{2}x-2ax^{2}-5x^{3}){\sqrt {a-x}}}{12(a-x)}}-{\frac {a^{3}\arctan {\frac {\sqrt {x}}{\sqrt {a-x}}}}{4}}\right)|_{0}^{a}=}
=
(
x
(
7
⋅
3
2
x
−
2
⋅
3
x
2
−
5
x
3
)
3
−
x
12
(
3
−
x
)
−
3
3
arctan
x
3
−
x
4
)
|
0
3
=
{\displaystyle =\left({\frac {{\sqrt {x}}(7\cdot 3^{2}x-2\cdot 3x^{2}-5x^{3}){\sqrt {3-x}}}{12(3-x)}}-{\frac {3^{3}\arctan {\frac {\sqrt {x}}{\sqrt {3-x}}}}{4}}\right)|_{0}^{3}=}
=
(
(
−
5
x
3
−
6
x
2
+
63
x
)
x
(
3
−
x
)
12
(
−
x
+
3
)
−
27
arctan
x
3
−
x
4
)
|
0
3
=
{\displaystyle =\left({\frac {(-5x^{3}-6x^{2}+63x){\sqrt {x(3-x)}}}{12(-x+3)}}-{\frac {27\arctan {\frac {\sqrt {x}}{\sqrt {3-x}}}}{4}}\right)|_{0}^{3}=}
=
(
(
5
x
2
+
21
x
)
x
(
3
−
x
)
12
−
27
arctan
x
3
−
x
4
)
|
0
3
=
{\displaystyle =\left({\frac {(5x^{2}+21x){\sqrt {x(3-x)}}}{12}}-{\frac {27\arctan {\frac {\sqrt {x}}{\sqrt {3-x}}}}{4}}\right)|_{0}^{3}=}
=
(
(
5
⋅
3
2
+
21
⋅
3
)
3
(
3
−
3
)
12
−
27
arctan
3
3
−
3
4
)
−
(
(
5
⋅
0
2
+
21
⋅
0
)
0
(
3
−
0
)
12
−
27
arctan
0
3
−
0
4
)
=
{\displaystyle =\left({\frac {(5\cdot 3^{2}+21\cdot 3){\sqrt {3(3-3)}}}{12}}-{\frac {27\arctan {\frac {\sqrt {3}}{\sqrt {3-3}}}}{4}}\right)-\left({\frac {(5\cdot 0^{2}+21\cdot 0){\sqrt {0(3-0)}}}{12}}-{\frac {27\arctan {\frac {\sqrt {0}}{\sqrt {3-0}}}}{4}}\right)=}
=
(
(
45
+
63
)
3
⋅
0
12
−
27
arctan
3
0
4
)
−
(
0
−
27
arctan
(
0
)
4
)
=
{\displaystyle =\left({\frac {(45+63){\sqrt {3\cdot 0}}}{12}}-{\frac {27\arctan {\frac {\sqrt {3}}{0}}}{4}}\right)-\left(0-{\frac {27\arctan(0)}{4}}\right)=}
=
(
0
−
27
arctan
(
∞
)
4
)
−
(
−
27
⋅
0
4
)
=
{\displaystyle =\left(0-{\frac {27\arctan(\infty )}{4}}\right)-\left(-{\frac {27\cdot 0}{4}}\right)=}
=
(
−
27
⋅
π
2
4
)
−
0
=
−
27
π
8
.
{\displaystyle =\left(-{\frac {27\cdot {\frac {\pi }{2}}}{4}}\right)-0=-{\frac {27\pi }{8}}.}
Kadangi
a
3
=
3
3
=
27
,
{\displaystyle a^{3}=3^{3}=27,}
tai seniau gautas atsakymas
a
3
π
8
{\displaystyle {\frac {a^{3}\pi }{8}}}
įstačius
a
=
3
{\displaystyle a=3}
atitinka ir iš to darome išvada, kad Gryno formulė veikia teisingai (išskyrus minusiuką).
Apskaičiuosime darbą jėgos
F
(
x
,
y
)
{\displaystyle F(x,y)}
persikeliant materialiam taškui elipse teigiama kryptimi, jeigu jėga kiekviename taške (x; y) elipsės nukreipta į elipsės centrą ir pagal dydį lygi atstumui nuo taško (x; y) iki elipsės centro.
Pagal sąlyga,
|
F
(
x
,
y
)
|
=
x
2
+
y
2
;
{\displaystyle |F(x,y)|={\sqrt {x^{2}+y^{2}}};}
Jėgos F(x, y) koordinatės tokios:
P
=
−
x
,
{\displaystyle P=-x,}
Q
=
−
y
{\displaystyle Q=-y}
[ženklas "
−
{\displaystyle -}
" paaiškinamas tuo, kad jėga nukreipta į tašką (0; 0)]. Pagal formulę turime
A
=
−
∮
L
x
d
x
+
y
d
y
,
{\displaystyle A=-\oint _{L}xdx+ydy,}
kur L - elipsė
x
=
a
cos
t
,
y
=
b
sin
t
,
{\displaystyle x=a\cos t,\;y=b\sin t,}
0
≤
t
≤
2
π
.
{\displaystyle 0\leq t\leq 2\pi .}
Todėl
A
=
−
∫
0
2
π
a
cos
t
(
−
a
sin
t
)
d
t
+
b
sin
(
t
)
b
cos
(
t
)
d
t
=
−
∫
0
2
π
(
b
2
−
a
2
)
sin
(
t
)
cos
t
d
t
=
{\displaystyle A=-\int _{0}^{2\pi }a\cos t(-a\sin t)dt+b\sin(t)b\cos(t)dt=-\int _{0}^{2\pi }(b^{2}-a^{2})\sin(t)\cos t\;dt=}
=
a
2
−
b
2
2
∫
0
2
π
sin
(
2
t
)
d
t
=
a
2
−
b
2
4
(
−
cos
(
2
t
)
)
|
0
2
π
=
0.
{\displaystyle ={a^{2}-b^{2} \over 2}\int _{0}^{2\pi }\sin(2t)dt={a^{2}-b^{2} \over 4}(-\cos(2t))|_{0}^{2\pi }=0.}
Jei t keistusi nuo 0 iki
π
2
,
{\displaystyle {\pi \over 2},}
integralas butu lygus
a
2
−
b
2
4
(
−
cos
(
2
t
)
)
|
0
π
2
=
a
2
−
b
2
2
.
{\displaystyle {a^{2}-b^{2} \over 4}(-\cos(2t))|_{0}^{\pi \over 2}={a^{2}-b^{2} \over 2}.}
Tarkime, jei
a
=
5
,
b
=
3
,
{\displaystyle a=5,\;b=3,}
tai padarytas darbas pirmame ketvirtyje yra
A
=
a
2
−
b
2
2
=
5
2
−
3
2
2
=
25
−
9
2
=
16
2
=
8.
{\displaystyle A={a^{2}-b^{2} \over 2}={5^{2}-3^{2} \over 2}={\frac {25-9}{2}}={\frac {16}{2}}=8.}
Kad patikrinti ar apskaičiuota teisingai reikia sudėti visas x reikšmes ant elipsės linijos pirmame ketvirtyje. Taip pat reikia sudėti visas y reikšmes ant elipsės linijos pirmame ketvirtyje. Galiausiai reikia sudėti sumas x ir y reikšmių, kad gauti darbą A pirmame ketvirtyje.
Arba tiesiog darbas yra lygus
A
=
∑
n
=
1
100
x
n
2
+
y
n
2
;
{\displaystyle A=\sum _{n=1}^{100}{\sqrt {x_{n}^{2}+y_{n}^{2}}};}
čia
x
n
{\displaystyle x_{n}}
yra visos x reikšmės ant elipsės linijos pirmame ketvirtyje nuo 0 iki a ; analogiškai
y
n
{\displaystyle y_{n}}
yra visos y reikšmės ant elipsės linijos pirmame ketvirtyje nuo 0 iki b .
Kuris iš šių variantų yra darbas A , paaiškės pasumavus ir paskaičiavus. Sutapimas ar ne, bet
A
=
3
+
5
=
8
{\displaystyle A=3+5=8}
pagal pirmą variantą. Na, o pagal antrą variantą turime:
A
=
∑
n
=
1
10
(
n
(
3
/
10
)
)
2
+
(
(
10
−
n
)
(
5
/
10
)
)
2
=
{\displaystyle A=\sum _{n=1}^{10}{\sqrt {(n(3/10))^{2}+((10-n)(5/10))^{2}}}=}
A
=
0.3
2
+
5
2
+
0.6
2
+
4.5
2
+
0.9
2
+
4
2
+
1.2
2
+
3.5
2
+
1.5
2
+
3
2
+
{\displaystyle A={\sqrt {0.3^{2}+5^{2}}}+{\sqrt {0.6^{2}+4.5^{2}}}+{\sqrt {0.9^{2}+4^{2}}}+{\sqrt {1.2^{2}+3.5^{2}}}+{\sqrt {1.5^{2}+3^{2}}}+}
+
1.8
2
+
2.5
2
+
2.1
2
+
2
2
+
2.4
2
+
1.5
2
+
2.7
2
+
1
2
+
3
2
+
0.5
2
=
{\displaystyle +{\sqrt {1.8^{2}+2.5^{2}}}+{\sqrt {2.1^{2}+2^{2}}}+{\sqrt {2.4^{2}+1.5^{2}}}+{\sqrt {2.7^{2}+1^{2}}}+{\sqrt {3^{2}+0.5^{2}}}=}
=
5.0089919
+
4.539823785
+
4.1
+
3.7
+
3.354101966
+
{\displaystyle =5.0089919+4.539823785+4.1+3.7+3.354101966+}
+
3.08058436
+
2.9
+
2.83019434
+
2.879236
+
3.082207
=
{\displaystyle +3.08058436+2.9+2.83019434+2.879236+3.082207=}
=
35.475139351.
{\displaystyle =35.475139351.}
Na, pagal pirmą variantą tikrai ne sutapimas, nes, jei
a
=
8
,
b
=
6
,
{\displaystyle a=8,\;b=6,}
tai
A
=
8
+
6
=
14
{\displaystyle A=8+6=14}
ir
A
=
a
2
−
b
2
2
=
8
2
−
6
2
2
=
64
−
36
2
=
28
2
=
14.
{\displaystyle A={a^{2}-b^{2} \over 2}={8^{2}-6^{2} \over 2}={64-36 \over 2}={\frac {28}{2}}=14.}
Bet ne, vis dėl to tai sutapimas, nes jei
a
=
8
,
b
=
7
,
{\displaystyle a=8,\;b=7,}
tai
A
=
8
+
7
=
15
{\displaystyle A=8+7=15}
ir
A
=
a
2
−
b
2
2
=
8
2
−
7
2
2
=
64
−
49
2
=
15
2
=
7.5.
{\displaystyle A={a^{2}-b^{2} \over 2}={8^{2}-7^{2} \over 2}={64-49 \over 2}={\frac {15}{2}}=7.5.}
Integruojant gauname:
A
=
∫
0
5
x
2
+
(
3
−
3
x
5
)
2
d
x
=
{\displaystyle A=\int _{0}^{5}{\sqrt {x^{2}+(3-{\frac {3x}{5}})^{2}}}dx=}
=
1
340
(
34
x
−
45
)
34
x
2
−
90
x
+
225
−
1125
arcsinh
(
3
5
−
34
x
75
)
68
34
|
0
5
=
{\displaystyle ={\frac {1}{340}}(34x-45){\sqrt {34x^{2}-90x+225}}-{\frac {1125\operatorname {arcsinh} ({\frac {3}{5}}-{\frac {34x}{75}})}{68{\sqrt {34}}}}|_{0}^{5}=}
=
34
⋅
5
−
45
340
34
⋅
5
2
−
90
⋅
5
+
225
−
1125
arcsinh
(
3
5
−
34
⋅
5
75
)
68
34
−
(
34
⋅
0
−
45
340
34
⋅
0
2
−
90
⋅
0
+
225
−
1125
arcsinh
(
3
5
−
34
⋅
0
75
)
68
34
)
=
{\displaystyle ={\frac {34\cdot 5-45}{340}}{\sqrt {34\cdot 5^{2}-90\cdot 5+225}}-{\frac {1125\operatorname {arcsinh} ({\frac {3}{5}}-{\frac {34\cdot 5}{75}})}{68{\sqrt {34}}}}-\left({\frac {34\cdot 0-45}{340}}{\sqrt {34\cdot 0^{2}-90\cdot 0+225}}-{\frac {1125\operatorname {arcsinh} ({\frac {3}{5}}-{\frac {34\cdot 0}{75}})}{68{\sqrt {34}}}}\right)=}
=
170
−
45
340
850
−
450
+
225
−
1125
arcsinh
(
3
5
−
170
75
)
68
34
−
(
−
45
340
225
−
1125
arcsinh
(
3
5
)
68
34
)
=
{\displaystyle ={\frac {170-45}{340}}{\sqrt {850-450+225}}-{\frac {1125\operatorname {arcsinh} ({\frac {3}{5}}-{\frac {170}{75}})}{68{\sqrt {34}}}}-\left({\frac {-45}{340}}{\sqrt {225}}-{\frac {1125\operatorname {arcsinh} ({\frac {3}{5}})}{68{\sqrt {34}}}}\right)=}
=
125
340
625
−
1125
arcsinh
(
3
⋅
75
−
170
⋅
5
5
⋅
75
)
68
34
−
(
−
9
68
⋅
15
−
1125
arcsinh
(
0.6
)
396.50472884948
)
=
{\displaystyle ={\frac {125}{340}}{\sqrt {625}}-{\frac {1125\operatorname {arcsinh} ({\frac {3\cdot 75-170\cdot 5}{5\cdot 75}})}{68{\sqrt {34}}}}-\left({\frac {-9}{68}}\cdot 15-{\frac {1125\operatorname {arcsinh} (0.6)}{396.50472884948}}\right)=}
=
25
68
⋅
25
−
1125
arcsinh
(
225
−
850
375
)
396.50472884948
−
(
−
135
68
−
1125
⋅
0.5688248987
396.50472884948
)
=
{\displaystyle ={\frac {25}{68}}\cdot 25-{\frac {1125\operatorname {arcsinh} ({\frac {225-850}{375}})}{396.50472884948}}-\left({\frac {-135}{68}}-{\frac {1125\cdot 0.5688248987}{396.50472884948}}\right)=}
=
625
68
−
1125
arcsinh
(
−
625
375
)
396.50472884948
−
(
−
135
68
−
639.928011
396.50472884948
)
=
{\displaystyle ={\frac {625}{68}}-{\frac {1125\operatorname {arcsinh} ({\frac {-625}{375}})}{396.50472884948}}-\left({\frac {-135}{68}}-{\frac {639.928011}{396.50472884948}}\right)=}
=
9.19117647
−
1125
arcsinh
(
−
5
3
)
396.50472884948
−
(
−
1.98529412
−
1.613922772
)
=
{\displaystyle =9.19117647-{\frac {1125\operatorname {arcsinh} (-{\frac {5}{3}})}{396.50472884948}}-(-1.98529412-1.613922772)=}
=
9.19117647
−
1125
⋅
(
−
1.283795663
)
396.50472884948
−
(
−
3.599216892
)
=
{\displaystyle =9.19117647-{\frac {1125\cdot (-1.283795663)}{396.50472884948}}-(-3.599216892)=}
=
9.19117647
+
3.642504151
+
3.599216892
=
16.43289751.
{\displaystyle =9.19117647+3.642504151+3.599216892=16.43289751.}
Pastebime, kad
2
A
/
10
=
2
⋅
16.43289751
/
10
=
3.286579503.
{\displaystyle 2A/10=2\cdot 16.43289751/10=3.286579503.}
Apskaičiuosime darbą jėgos
F
(
x
,
y
)
{\displaystyle F(x,y)}
persikeliant materialiam taškui elipse teigiama kryptimi, jeigu jėga kiekviename taške (x; y) elipsės nukreipta į elipsės centrą ir pagal dydį lygi atstumui nuo taško (x; y) iki elipsės centro.
Pagal sąlyga,
|
F
(
x
,
y
)
|
=
x
2
+
y
2
;
{\displaystyle |F(x,y)|={\sqrt {x^{2}+y^{2}}};}
Jėgos F(x, y) koordinatės tokios:
P
=
−
x
,
{\displaystyle P=-x,}
Q
=
−
y
{\displaystyle Q=-y}
[ženklas "
−
{\displaystyle -}
" paaiškinamas tuo, kad jėga nukreipta į tašką (0; 0)]. Pagal formulę turime
A
=
−
∮
L
x
d
x
+
y
d
y
,
{\displaystyle A=-\oint _{L}xdx+ydy,}
kur L - elipsė
x
=
a
cos
t
,
y
=
b
sin
t
,
{\displaystyle x=a\cos t,\;y=b\sin t,}
0
≤
t
≤
2
π
.
{\displaystyle 0\leq t\leq 2\pi .}
Todėl
A
=
−
∫
0
2
π
a
cos
t
(
−
a
sin
t
)
d
t
+
b
sin
(
t
)
b
cos
(
t
)
d
t
=
−
∫
0
2
π
(
b
2
−
a
2
)
sin
(
t
)
cos
t
d
t
=
{\displaystyle A=-\int _{0}^{2\pi }a\cos t(-a\sin t)dt+b\sin(t)b\cos(t)dt=-\int _{0}^{2\pi }(b^{2}-a^{2})\sin(t)\cos t\;dt=}
=
a
2
−
b
2
2
∫
0
2
π
sin
(
2
t
)
d
t
=
a
2
−
b
2
4
(
−
cos
(
2
t
)
)
|
0
2
π
=
0.
{\displaystyle ={a^{2}-b^{2} \over 2}\int _{0}^{2\pi }\sin(2t)dt={a^{2}-b^{2} \over 4}(-\cos(2t))|_{0}^{2\pi }=0.}
Jei t keistusi nuo 0 iki
π
2
,
{\displaystyle {\pi \over 2},}
integralas butu lygus
a
2
−
b
2
4
(
−
cos
(
2
t
)
)
|
0
π
2
=
a
2
−
b
2
4
(
−
cos
(
2
⋅
π
2
)
)
−
a
2
−
b
2
4
(
−
cos
(
2
⋅
0
)
)
=
{\displaystyle {a^{2}-b^{2} \over 4}(-\cos(2t))|_{0}^{\pi \over 2}={a^{2}-b^{2} \over 4}(-\cos(2\cdot {\pi \over 2}))-{a^{2}-b^{2} \over 4}(-\cos(2\cdot 0))=}
=
a
2
−
b
2
4
(
−
cos
π
+
cos
(
0
)
)
=
a
2
−
b
2
4
(
−
(
−
1
)
+
1
)
=
a
2
−
b
2
2
.
{\displaystyle ={a^{2}-b^{2} \over 4}(-\cos \pi +\cos(0))={a^{2}-b^{2} \over 4}(-(-1)+1)={a^{2}-b^{2} \over 2}.}
Tarkime, jei
a
=
5
,
b
=
3
,
{\displaystyle a=5,\;b=3,}
tai padarytas darbas pirmame ketvirtyje yra
A
=
a
2
−
b
2
2
=
5
2
−
3
2
2
=
25
−
9
2
=
16
2
=
8.
{\displaystyle A={a^{2}-b^{2} \over 2}={5^{2}-3^{2} \over 2}={\frac {25-9}{2}}={\frac {16}{2}}=8.}
Kad patikrinti ar apskaičiuota teisingai reikia sudėti visas x reikšmes ant elipsės linijos pirmame ketvirtyje. Taip pat reikia sudėti visas y reikšmes ant elipsės linijos pirmame ketvirtyje. Galiausiai reikia sudėti sumas x ir y reikšmių, kad gauti darbą A pirmame ketvirtyje.
Arba tiesiog darbas yra lygus
A
=
1
100
∑
n
=
1
100
x
n
2
+
y
n
2
;
{\displaystyle A={\frac {1}{100}}\sum _{n=1}^{100}{\sqrt {x_{n}^{2}+y_{n}^{2}}};}
čia
x
n
{\displaystyle x_{n}}
yra visos x reikšmės ant elipsės linijos pirmame ketvirtyje nuo 0 iki a ; analogiškai
y
n
{\displaystyle y_{n}}
yra visos y reikšmės ant elipsės linijos pirmame ketvirtyje nuo 0 iki b .
Kuris iš šių variantų yra darbas A , paaiškės pasumavus ir paskaičiavus. Sutapimas ar ne, bet
A
=
3
+
5
=
8
{\displaystyle A=3+5=8}
pagal pirmą variantą. Na, o pagal antrą variantą turime:
A
=
1
10
∑
n
=
1
10
(
n
(
3
/
10
)
)
2
+
(
(
10
−
n
)
(
5
/
10
)
)
2
=
{\displaystyle A={\frac {1}{10}}\sum _{n=1}^{10}{\sqrt {(n(3/10))^{2}+((10-n)(5/10))^{2}}}=}
A
=
(
0.3
2
+
5
2
+
0.6
2
+
4.5
2
+
0.9
2
+
4
2
+
1.2
2
+
3.5
2
+
1.5
2
+
3
2
+
{\displaystyle A=({\sqrt {0.3^{2}+5^{2}}}+{\sqrt {0.6^{2}+4.5^{2}}}+{\sqrt {0.9^{2}+4^{2}}}+{\sqrt {1.2^{2}+3.5^{2}}}+{\sqrt {1.5^{2}+3^{2}}}+}
+
1.8
2
+
2.5
2
+
2.1
2
+
2
2
+
2.4
2
+
1.5
2
+
2.7
2
+
1
2
+
3
2
+
0.5
2
)
/
10
=
{\displaystyle +{\sqrt {1.8^{2}+2.5^{2}}}+{\sqrt {2.1^{2}+2^{2}}}+{\sqrt {2.4^{2}+1.5^{2}}}+{\sqrt {2.7^{2}+1^{2}}}+{\sqrt {3^{2}+0.5^{2}}})/10=}
=
(
5.0089919
+
4.539823785
+
4.1
+
3.7
+
3.354101966
+
{\displaystyle =(5.0089919+4.539823785+4.1+3.7+3.354101966+}
+
3.08058436
+
2.9
+
2.83019434
+
2.879236
+
3.041381265
)
/
10
=
{\displaystyle +3.08058436+2.9+2.83019434+2.879236+3.041381265)/10=}
=
35.43431361
/
10
=
3.543431361.
{\displaystyle =35.43431361/10=3.543431361.}
Iš tikro, ko gero, mes apskaičiuojame tokiu budu ne darbą atlikta apeinant elipsės liniją pirmame ketvirtyje, o darbą atlikta apeinant tiesę pirmame ketvirtyje. Štai kodas programos "Free Pascal" (FreePascal IDE for Win32 for i386; Target CPU: i386; Version 1.0.12 2011/04/23; <Compiler Version 2.4.4>; <Debugger GDB 7.2>; Copyright <C> 1998-2009):
var
a:longint;
b,d,c:real;
begin
c:=0;
for a:=1 to 10
do
c:=c+0.1*sqrt(sqr(a*0.3)+sqr((10-a)*0.5));
writeln(c);
readln;
end.
Gauname atsakymą
A
=
3.19325040614418.
{\displaystyle A=3.19325040614418.}
Arba darome taip (pradedame ne nuo 1, o nuo 0, bet tada reikėtų dalinti iš 11, o ne iš 10 kol a iki mažo skaičiaus skaičiuojamas):
var
a:longint;
b,d,c:real;
begin
c:=0;
for a:=0 to 10
do
c:=c+0.1*sqrt(sqr(a*0.3)+sqr((10-a)*0.5));
writeln(c);
readln;
end.
Ir gauname atsakymą
A
=
3.69325040614418.
{\displaystyle A=3.69325040614418.}
Panaudojus šį kodą:
var
a:longint;
c:real;
begin
for a:=1 to 10
do
c:=c+0.1*sqrt(sqr(a*0.3)+sqr((11-a)*0.5));
writeln(c);
readln;
end.
gauname
A
=
3.54343136406170.
{\displaystyle A=3.54343136406170.}
Kad gauti tikslesnį atsakymą naudojame šį kodą:
var
a:longint;
b,d,c:real;
begin
c:=0;
for a:=1 to 100
do
c:=c+0.01*sqrt(sqr(a*0.03)+sqr((100-a)*0.05));
writeln(c);
readln;
end.
Tokiu budu gauname gana tikslų atsakymą
A
=
3.27664616925457.
{\displaystyle A=3.27664616925457.}
Kad gauti labai tikslų atsakymą naudojame tokį kodą:
var
a:longint;
c:real;
begin
for a:=1 to 1000000
do
c:=c+0.000001*sqrt(sqr(a*0.000003)+sqr((1000000-a)*0.000005));
writeln(c);
readln;
end.
Gauname atsakymą
A
=
3.28657850216630.
{\displaystyle A=3.28657850216630.}
Kad gauti labai labai tikslų atsakymą naudojame šį kodą:
var
a:longint;
c:real;
begin
for a:=1 to 1000000000 do
c:=c+0.000000001*sqrt(sqr(a*0.000000003)+sqr((1000000000-a)*0.000000005));
writeln(c);
readln;
end.
Gauname atsakymą
A
=
3.28657950114378
{\displaystyle A=3.28657950114378}
po 22 sekundžių ant 2.6 GHz procesoriaus.
Jei naudojame šį kodą:
var
a:longint;
c:real;
begin
for a:=0 to 1000000000 do
c:=c+0.000000001*sqrt(sqr(a*0.000000003)+sqr((1000000000-a)*0.000000005));
writeln(c);
readln;
end.
tai gauname atsakymą
A
=
3.28657950614378.
{\displaystyle A=3.28657950614378.}
Panaudojus šį kodą:
var
a:longint;
c:real;
begin
for a:=1 to 1000000000 do
c:=c+0.000000001*sqrt(sqr(a*0.000000003)+sqr((1000000001-a)*0.000000005));
writeln(c);
readln;
end.
gauname atsakymą
A
=
3.28657950471730.
{\displaystyle A=3.28657950471730.}
Integruojant gauname:
A
=
∫
0
5
x
2
+
(
3
−
3
x
5
)
2
d
x
=
{\displaystyle A=\int _{0}^{5}{\sqrt {x^{2}+(3-{\frac {3x}{5}})^{2}}}dx=}
=
1
340
(
34
x
−
45
)
34
x
2
−
90
x
+
225
−
1125
arcsinh
(
3
5
−
34
x
75
)
68
34
|
0
5
=
{\displaystyle ={\frac {1}{340}}(34x-45){\sqrt {34x^{2}-90x+225}}-{\frac {1125\operatorname {arcsinh} ({\frac {3}{5}}-{\frac {34x}{75}})}{68{\sqrt {34}}}}|_{0}^{5}=}
=
34
⋅
5
−
45
340
34
⋅
5
2
−
90
⋅
5
+
225
−
1125
arcsinh
(
3
5
−
34
⋅
5
75
)
68
34
−
(
34
⋅
0
−
45
340
34
⋅
0
2
−
90
⋅
0
+
225
−
1125
arcsinh
(
3
5
−
34
⋅
0
75
)
68
34
)
=
{\displaystyle ={\frac {34\cdot 5-45}{340}}{\sqrt {34\cdot 5^{2}-90\cdot 5+225}}-{\frac {1125\operatorname {arcsinh} ({\frac {3}{5}}-{\frac {34\cdot 5}{75}})}{68{\sqrt {34}}}}-\left({\frac {34\cdot 0-45}{340}}{\sqrt {34\cdot 0^{2}-90\cdot 0+225}}-{\frac {1125\operatorname {arcsinh} ({\frac {3}{5}}-{\frac {34\cdot 0}{75}})}{68{\sqrt {34}}}}\right)=}
=
170
−
45
340
850
−
450
+
225
−
1125
arcsinh
(
3
5
−
170
75
)
68
34
−
(
−
45
340
225
−
1125
arcsinh
(
3
5
)
68
34
)
=
{\displaystyle ={\frac {170-45}{340}}{\sqrt {850-450+225}}-{\frac {1125\operatorname {arcsinh} ({\frac {3}{5}}-{\frac {170}{75}})}{68{\sqrt {34}}}}-\left({\frac {-45}{340}}{\sqrt {225}}-{\frac {1125\operatorname {arcsinh} ({\frac {3}{5}})}{68{\sqrt {34}}}}\right)=}
=
125
340
625
−
1125
arcsinh
(
3
⋅
75
−
170
⋅
5
5
⋅
75
)
68
34
−
(
−
9
68
⋅
15
−
1125
arcsinh
(
0.6
)
396.50472884948
)
=
{\displaystyle ={\frac {125}{340}}{\sqrt {625}}-{\frac {1125\operatorname {arcsinh} ({\frac {3\cdot 75-170\cdot 5}{5\cdot 75}})}{68{\sqrt {34}}}}-\left({\frac {-9}{68}}\cdot 15-{\frac {1125\operatorname {arcsinh} (0.6)}{396.50472884948}}\right)=}
=
25
68
⋅
25
−
1125
arcsinh
(
225
−
850
375
)
396.50472884948
−
(
−
135
68
−
1125
⋅
0.5688248987
396.50472884948
)
=
{\displaystyle ={\frac {25}{68}}\cdot 25-{\frac {1125\operatorname {arcsinh} ({\frac {225-850}{375}})}{396.50472884948}}-\left({\frac {-135}{68}}-{\frac {1125\cdot 0.5688248987}{396.50472884948}}\right)=}
=
625
68
−
1125
arcsinh
(
−
625
375
)
396.50472884948
−
(
−
135
68
−
639.928011
396.50472884948
)
=
{\displaystyle ={\frac {625}{68}}-{\frac {1125\operatorname {arcsinh} ({\frac {-625}{375}})}{396.50472884948}}-\left({\frac {-135}{68}}-{\frac {639.928011}{396.50472884948}}\right)=}
=
9.19117647
−
1125
arcsinh
(
−
5
3
)
396.50472884948
−
(
−
1.98529412
−
1.613922772
)
=
{\displaystyle =9.19117647-{\frac {1125\operatorname {arcsinh} (-{\frac {5}{3}})}{396.50472884948}}-(-1.98529412-1.613922772)=}
=
9.19117647
−
1125
⋅
(
−
1.283795663
)
396.50472884948
−
(
−
3.599216892
)
=
{\displaystyle =9.19117647-{\frac {1125\cdot (-1.283795663)}{396.50472884948}}-(-3.599216892)=}
=
9.19117647
+
3.642504151
+
3.599216892
=
16.43289751.
{\displaystyle =9.19117647+3.642504151+3.599216892=16.43289751.}
Pastebime, kad
2
A
/
10
=
2
⋅
16.43289751
/
10
=
3.286579503.
{\displaystyle 2A/10=2\cdot 16.43289751/10=3.286579503.}
Apskaičiuojame viską nepriekaištingai tiksliai su kompiuterio kalkuliatoriumi:
A
=
625
68
−
1125
arcsinh
(
−
5
/
3
)
68
34
−
(
−
135
68
−
1125
arcsinh
(
3
/
5
)
68
34
)
=
{\displaystyle A={\frac {625}{68}}-{\frac {1125\operatorname {arcsinh} (-5/3)}{68{\sqrt {34}}}}-\left({\frac {-135}{68}}-{\frac {1125\operatorname {arcsinh} (3/5)}{68{\sqrt {34}}}}\right)=}
=
12.833680621236990323769396193322
−
(
−
3.5992168895913637545005254840611
)
=
16.432897510828354078269921677383.
{\displaystyle =12.833680621236990323769396193322-(-3.5992168895913637545005254840611)=16.432897510828354078269921677383.}
Randame, kad
A
/
5
=
16.432897510828354078269921677383
/
5
=
3.2865795021656708156539843354766.
{\displaystyle A/5=16.432897510828354078269921677383/5=3.2865795021656708156539843354766.}
Toliau bandome rasti atlikta darbą apeita tiese
y
=
3
−
3
x
5
{\displaystyle y=3-{\frac {3x}{5}}}
integruojant
A
=
−
∮
L
x
d
x
+
y
d
y
.
{\displaystyle A=-\oint _{L}xdx+ydy.}
Randame
d
y
=
−
3
5
d
x
.
{\displaystyle dy=-{\frac {3}{5}}\;dx.}
Turime, kad x integravimo ribos yra 0 iki 5, o y integravimo ribos yra nuo 0 iki 3. Gauname:
A
=
−
∮
L
x
d
x
+
y
d
y
=
−
(
∫
0
5
x
d
x
−
3
5
(
3
−
3
x
5
)
d
x
)
=
−
∫
0
5
(
x
−
3
5
(
3
−
3
x
5
)
)
d
x
=
{\displaystyle A=-\oint _{L}xdx+ydy=-(\int _{0}^{5}x\;dx-{\frac {3}{5}}(3-{\frac {3x}{5}})dx)=-\int _{0}^{5}(x-{\frac {3}{5}}(3-{\frac {3x}{5}}))dx=}
=
−
∫
0
5
(
x
−
9
5
+
9
x
25
)
d
x
=
−
∫
0
5
(
−
9
5
+
25
x
+
9
x
25
)
d
x
=
−
∫
0
5
(
34
x
25
−
9
5
)
d
x
=
{\displaystyle =-\int _{0}^{5}(x-{\frac {9}{5}}+{\frac {9x}{25}})dx=-\int _{0}^{5}(-{\frac {9}{5}}+{\frac {25x+9x}{25}})dx=-\int _{0}^{5}({\frac {34x}{25}}-{\frac {9}{5}})dx=}
=
−
(
34
x
2
25
⋅
2
−
9
5
x
)
|
0
5
=
−
[
(
17
⋅
5
2
25
−
9
5
⋅
5
)
−
(
17
⋅
0
2
25
−
9
5
⋅
0
)
]
=
−
(
17
−
9
)
=
−
8.
{\displaystyle =-({\frac {34x^{2}}{25\cdot 2}}-{\frac {9}{5}}x)|_{0}^{5}=-[({\frac {17\cdot 5^{2}}{25}}-{\frac {9}{5}}\cdot 5)-({\frac {17\cdot 0^{2}}{25}}-{\frac {9}{5}}\cdot 0)]=-(17-9)=-8.}
Akivaizdu, kad atsakymas
A
=
−
8
{\displaystyle A=-8}
yra neteisingas, o atsakymas A=8 elipsei yra teisingas, nes elipsės lankas yra ilgesnis nei tiesės atkarpa pirmame ketvirtyje ir pagal sąlygą jėgos dydis proporcingas atstumui nuo centro, todėl elipsės lanko taškai yra toliau nuo centro nei tiesės
y
=
3
−
3
x
5
{\displaystyle y=3-{\frac {3x}{5}}}
atkarpos taškai. Ir todėl elipsės darbas A=8 yra didesnis už darbą A=3.2865795 tiesės atkarpa.
Pastebime, kad jeigu elipsė būtų apskritimas tai pirmame ketvirtyje atliktas darbas A=0. Taip yra todėl, kad kai x didėja, tada y reikšmės mažėja. Todėl skaičiuoti darbą, ko gero, galėtų būti teisingiau
A
=
∮
L
x
d
x
−
y
d
y
{\displaystyle A=\oint _{L}xdx-ydy}
arba
A
=
∮
L
−
x
d
x
+
y
d
y
.
{\displaystyle A=\oint _{L}-xdx+ydy.}
Tuomet akivaizdu, kad
A
=
a
2
+
b
2
2
=
5
2
+
3
2
2
=
17.
{\displaystyle A={\frac {a^{2}+b^{2}}{2}}={\frac {5^{2}+3^{2}}{2}}=17.}
Tą patį darba gauname ir apeinant tiese:
A
=
∮
L
x
d
x
−
y
d
y
=
∫
0
5
x
d
x
−
−
3
5
(
3
−
3
x
5
)
d
x
=
∫
0
5
(
x
+
3
5
(
3
−
3
x
5
)
)
d
x
=
{\displaystyle A=\oint _{L}xdx-ydy=\int _{0}^{5}x\;dx-{\frac {-3}{5}}(3-{\frac {3x}{5}})dx=\int _{0}^{5}(x+{\frac {3}{5}}(3-{\frac {3x}{5}}))dx=}
=
∫
0
5
(
x
+
9
5
−
9
x
25
)
d
x
=
∫
0
5
(
9
5
+
25
x
−
9
x
25
)
d
x
=
∫
0
5
(
16
x
25
+
9
5
)
d
x
=
{\displaystyle =\int _{0}^{5}(x+{\frac {9}{5}}-{\frac {9x}{25}})dx=\int _{0}^{5}({\frac {9}{5}}+{\frac {25x-9x}{25}})dx=\int _{0}^{5}({\frac {16x}{25}}+{\frac {9}{5}})dx=}
=
(
16
x
2
25
⋅
2
+
9
5
x
)
|
0
5
=
(
8
⋅
5
2
25
+
9
5
⋅
5
)
−
(
17
⋅
0
2
25
+
9
5
⋅
0
)
=
8
+
9
=
17.
{\displaystyle =({\frac {16x^{2}}{25\cdot 2}}+{\frac {9}{5}}x)|_{0}^{5}=({\frac {8\cdot 5^{2}}{25}}+{\frac {9}{5}}\cdot 5)-({\frac {17\cdot 0^{2}}{25}}+{\frac {9}{5}}\cdot 0)=8+9=17.}
Lygiai tą patį darbą gausime ir integruojant taip:
A
=
∮
L
x
d
x
−
y
d
y
=
∫
0
5
x
d
x
+
∫
0
3
y
d
y
=
x
2
2
|
0
5
+
y
2
2
|
0
3
=
25
2
+
9
2
=
17.
{\displaystyle A=\oint _{L}xdx-ydy=\int _{0}^{5}x\;dx+\int _{0}^{3}y\;dy={\frac {x^{2}}{2}}|_{0}^{5}+{\frac {y^{2}}{2}}|_{0}^{3}={\frac {25}{2}}+{\frac {9}{2}}=17.}
Tą patį gausime ir taip integruojant nuo 0 iki 5:
A
=
∫
F
d
F
=
∫
0
5
x
2
+
(
3
−
3
x
5
)
2
d
(
x
2
+
(
3
−
3
x
5
)
2
)
=
{\displaystyle A=\int F\;\mathbf {d} F=\int _{0}^{5}{\sqrt {x^{2}+(3-{\frac {3x}{5}})^{2}}}\;\mathbf {d} \left({\sqrt {x^{2}+(3-{\frac {3x}{5}})^{2}}}\right)=}
=
∫
0
5
x
2
+
(
3
−
3
x
5
)
2
0.5
(
x
2
+
(
3
−
3
x
/
5
)
2
)
−
0.5
(
2
x
+
2
(
3
−
3
x
/
5
)
(
−
0.6
)
)
d
x
=
{\displaystyle =\int _{0}^{5}{\sqrt {x^{2}+(3-{\frac {3x}{5}})^{2}}}0.5(x^{2}+(3-3x/5)^{2})^{-0.5}(2x+2(3-3x/5)(-0.6))\;dx=}
=
∫
0
5
x
2
+
(
3
−
3
x
5
)
2
(
x
2
+
(
3
−
3
x
/
5
)
2
)
−
0.5
(
x
−
0.6
(
3
−
3
x
/
5
)
d
x
=
{\displaystyle =\int _{0}^{5}{\sqrt {x^{2}+(3-{\frac {3x}{5}})^{2}}}(x^{2}+(3-3x/5)^{2})^{-0.5}(x-0.6(3-3x/5)\;dx=}
=
∫
0
5
x
2
+
(
3
−
3
x
5
)
2
(
x
−
1.8
+
0.36
x
)
x
2
+
(
3
−
3
x
/
5
)
2
d
x
=
{\displaystyle =\int _{0}^{5}{\frac {{\sqrt {x^{2}+(3-{\frac {3x}{5}})^{2}}}(x-1.8+0.36x)}{\sqrt {x^{2}+(3-3x/5)^{2}}}}\;dx=}
=
∫
0
5
(
1.36
x
−
1.8
)
d
x
=
(
1.36
x
2
2
−
1.8
x
)
|
0
5
=
{\displaystyle =\int _{0}^{5}(1.36x-1.8)\;dx=(1.36{\frac {x^{2}}{2}}-1.8x)|_{0}^{5}=}
=
[
(
0.68
x
−
1.8
)
x
]
|
0
5
=
(
0.68
⋅
5
−
1.8
)
⋅
5
=
(
3.4
−
1.8
)
⋅
5
=
1.6
⋅
5
=
8.
{\displaystyle =[(0.68x-1.8)x]|_{0}^{5}=(0.68\cdot 5-1.8)\cdot 5=(3.4-1.8)\cdot 5=1.6\cdot 5=8.}
Jėgos darbas padarytas judant kreive plokštumoje apskaičiuojamas pagal formulę
A
=
∫
B
C
P
d
x
+
Q
d
y
.
{\displaystyle A=\int _{BC}Pdx+Qdy.}
Jėgos darbas padarytas judant erdvine kreive apskaičiuojamas taip:
A
=
∫
B
C
P
d
x
+
Q
d
y
+
R
d
z
.
{\displaystyle A=\int _{BC}Pdx+Qdy+Rdz.}
Apskaičiuosime darbą jėgos
F
(
x
,
y
)
{\displaystyle F(x,y)}
persikeliant materialiam taškui elipse teigiama kryptimi, jeigu jėga kiekviename taške (x; y) elipsės nukreipta į elipsės centrą ir pagal dydį lygi atstumui nuo taško (x; y) iki elipsės centro.
Pagal sąlyga,
|
F
(
x
,
y
)
|
=
x
2
+
y
2
;
{\displaystyle |F(x,y)|={\sqrt {x^{2}+y^{2}}};}
Jėgos F(x, y) koordinatės tokios:
P
=
−
x
,
{\displaystyle P=-x,}
Q
=
−
y
{\displaystyle Q=-y}
[ženklas "
−
{\displaystyle -}
" paaiškinamas tuo, kad jėga nukreipta į tašką (0; 0)]. Pagal formulę turime
A
=
−
∮
L
x
d
x
+
y
d
y
,
{\displaystyle A=-\oint _{L}xdx+ydy,}
kur L - elipsė
x
=
a
cos
t
,
y
=
b
sin
t
,
{\displaystyle x=a\cos t,\;y=b\sin t,}
0
≤
t
≤
2
π
.
{\displaystyle 0\leq t\leq 2\pi .}
Todėl
A
=
−
∫
0
2
π
a
cos
t
(
−
a
sin
t
)
d
t
+
b
sin
(
t
)
b
cos
(
t
)
d
t
=
−
∫
0
2
π
(
b
2
−
a
2
)
sin
(
t
)
cos
t
d
t
=
{\displaystyle A=-\int _{0}^{2\pi }a\cos t(-a\sin t)dt+b\sin(t)b\cos(t)dt=-\int _{0}^{2\pi }(b^{2}-a^{2})\sin(t)\cos t\;dt=}
=
a
2
−
b
2
2
∫
0
2
π
sin
(
2
t
)
d
t
=
a
2
−
b
2
4
(
−
cos
(
2
t
)
)
|
0
2
π
=
0.
{\displaystyle ={a^{2}-b^{2} \over 2}\int _{0}^{2\pi }\sin(2t)dt={a^{2}-b^{2} \over 4}(-\cos(2t))|_{0}^{2\pi }=0.}
Jei t keistusi nuo 0 iki
π
2
,
{\displaystyle {\pi \over 2},}
integralas butu lygus
a
2
−
b
2
4
(
−
cos
(
2
t
)
)
|
0
π
2
=
a
2
−
b
2
4
(
−
cos
(
2
⋅
π
2
)
)
−
a
2
−
b
2
4
(
−
cos
(
2
⋅
0
)
)
=
{\displaystyle {a^{2}-b^{2} \over 4}(-\cos(2t))|_{0}^{\pi \over 2}={a^{2}-b^{2} \over 4}(-\cos(2\cdot {\pi \over 2}))-{a^{2}-b^{2} \over 4}(-\cos(2\cdot 0))=}
=
a
2
−
b
2
4
(
−
cos
π
+
cos
(
0
)
)
=
a
2
−
b
2
4
(
−
(
−
1
)
+
1
)
=
a
2
−
b
2
2
.
{\displaystyle ={a^{2}-b^{2} \over 4}(-\cos \pi +\cos(0))={a^{2}-b^{2} \over 4}(-(-1)+1)={a^{2}-b^{2} \over 2}.}
Tarkime, jei
a
=
5
,
b
=
3
,
{\displaystyle a=5,\;b=3,}
tai padarytas darbas pirmame ketvirtyje yra
A
=
a
2
−
b
2
2
=
5
2
−
3
2
2
=
25
−
9
2
=
16
2
=
8.
{\displaystyle A={a^{2}-b^{2} \over 2}={5^{2}-3^{2} \over 2}={\frac {25-9}{2}}={\frac {16}{2}}=8.}
Kad patikrinti ar apskaičiuota teisingai reikia sudėti visas x reikšmes ant elipsės linijos pirmame ketvirtyje. Taip pat reikia sudėti visas y reikšmes ant elipsės linijos pirmame ketvirtyje. Galiausiai reikia sudėti sumas x ir y reikšmių, kad gauti darbą A pirmame ketvirtyje.
Arba tiesiog darbas yra lygus
A
=
1
100
∑
n
=
1
100
x
n
2
+
y
n
2
;
{\displaystyle A={\frac {1}{100}}\sum _{n=1}^{100}{\sqrt {x_{n}^{2}+y_{n}^{2}}};}
čia
x
n
{\displaystyle x_{n}}
yra visos x reikšmės ant elipsės linijos pirmame ketvirtyje nuo 0 iki a ; analogiškai
y
n
{\displaystyle y_{n}}
yra visos y reikšmės ant elipsės linijos pirmame ketvirtyje nuo 0 iki b .
Kuris iš šių variantų yra darbas A , paaiškės pasumavus ir paskaičiavus. Sutapimas ar ne, bet
A
=
3
+
5
=
8
{\displaystyle A=3+5=8}
pagal pirmą variantą. Na, o pagal antrą variantą turime:
A
=
1
10
∑
n
=
1
10
(
n
(
3
/
10
)
)
2
+
(
(
10
−
n
)
(
5
/
10
)
)
2
=
{\displaystyle A={\frac {1}{10}}\sum _{n=1}^{10}{\sqrt {(n(3/10))^{2}+((10-n)(5/10))^{2}}}=}
A
=
(
0.3
2
+
5
2
+
0.6
2
+
4.5
2
+
0.9
2
+
4
2
+
1.2
2
+
3.5
2
+
1.5
2
+
3
2
+
{\displaystyle A=({\sqrt {0.3^{2}+5^{2}}}+{\sqrt {0.6^{2}+4.5^{2}}}+{\sqrt {0.9^{2}+4^{2}}}+{\sqrt {1.2^{2}+3.5^{2}}}+{\sqrt {1.5^{2}+3^{2}}}+}
+
1.8
2
+
2.5
2
+
2.1
2
+
2
2
+
2.4
2
+
1.5
2
+
2.7
2
+
1
2
+
3
2
+
0.5
2
)
/
10
=
{\displaystyle +{\sqrt {1.8^{2}+2.5^{2}}}+{\sqrt {2.1^{2}+2^{2}}}+{\sqrt {2.4^{2}+1.5^{2}}}+{\sqrt {2.7^{2}+1^{2}}}+{\sqrt {3^{2}+0.5^{2}}})/10=}
=
(
5.0089919
+
4.539823785
+
4.1
+
3.7
+
3.354101966
+
{\displaystyle =(5.0089919+4.539823785+4.1+3.7+3.354101966+}
+
3.08058436
+
2.9
+
2.83019434
+
2.879236
+
3.041381265
)
/
10
=
{\displaystyle +3.08058436+2.9+2.83019434+2.879236+3.041381265)/10=}
=
35.43431361
/
10
=
3.543431361.
{\displaystyle =35.43431361/10=3.543431361.}
Iš tikro, ko gero, mes apskaičiuojame tokiu budu ne darbą atlikta apeinant elipsės liniją pirmame ketvirtyje, o darbą atlikta apeinant tiesę pirmame ketvirtyje. Štai kodas programos "Free Pascal" (FreePascal IDE for Win32 for i386; Target CPU: i386; Version 1.0.12 2011/04/23; <Compiler Version 2.4.4>; <Debugger GDB 7.2>; Copyright <C> 1998-2009):
var
a:longint;
c:real;
begin
for a:=1 to 10
do
c:=c+0.1*sqrt(sqr(a*0.3)+sqr((11-a)*0.5));
writeln(c);
readln;
end.
gauname
A
=
3.54343136406170.
{\displaystyle A=3.54343136406170.}
Panaudojus šį kodą:
var
a:longint;
c:real;
begin
for a:=1 to 1000000000 do
c:=c+0.000000001*sqrt(sqr(a*0.000000003)+sqr((1000000001-a)*0.000000005));
writeln(c);
readln;
end.
gauname atsakymą
A
=
3.28657950471730
{\displaystyle A=3.28657950471730}
po 22 sekundžių ant 2.6 GHz procesoriaus.
Panaudojus šį (teisingesnį) kodą:
var
a:longint;
c:real;
begin
for a:=0 to 1000000000 do
c:=c+sqrt(sqr(a*0.000000003)+sqr((1000000000-a)*0.000000005))/1000000001;
writeln(c);
readln;
end.
gauname atsakymą
A
=
3.28657950285701
{\displaystyle A=3.28657950285701}
po 25 sekundžių ant 2.6 GHz procesoriaus.
Integruojant gauname:
A
=
∫
0
5
x
2
+
(
3
−
3
x
5
)
2
d
x
=
{\displaystyle A=\int _{0}^{5}{\sqrt {x^{2}+(3-{\frac {3x}{5}})^{2}}}dx=}
=
1
340
(
34
x
−
45
)
34
x
2
−
90
x
+
225
−
1125
arcsinh
(
3
5
−
34
x
75
)
68
34
|
0
5
=
{\displaystyle ={\frac {1}{340}}(34x-45){\sqrt {34x^{2}-90x+225}}-{\frac {1125\operatorname {arcsinh} ({\frac {3}{5}}-{\frac {34x}{75}})}{68{\sqrt {34}}}}|_{0}^{5}=}
=
34
⋅
5
−
45
340
34
⋅
5
2
−
90
⋅
5
+
225
−
1125
arcsinh
(
3
5
−
34
⋅
5
75
)
68
34
−
(
34
⋅
0
−
45
340
34
⋅
0
2
−
90
⋅
0
+
225
−
1125
arcsinh
(
3
5
−
34
⋅
0
75
)
68
34
)
=
{\displaystyle ={\frac {34\cdot 5-45}{340}}{\sqrt {34\cdot 5^{2}-90\cdot 5+225}}-{\frac {1125\operatorname {arcsinh} ({\frac {3}{5}}-{\frac {34\cdot 5}{75}})}{68{\sqrt {34}}}}-\left({\frac {34\cdot 0-45}{340}}{\sqrt {34\cdot 0^{2}-90\cdot 0+225}}-{\frac {1125\operatorname {arcsinh} ({\frac {3}{5}}-{\frac {34\cdot 0}{75}})}{68{\sqrt {34}}}}\right)=}
=
170
−
45
340
850
−
450
+
225
−
1125
arcsinh
(
3
5
−
170
75
)
68
34
−
(
−
45
340
225
−
1125
arcsinh
(
3
5
)
68
34
)
=
{\displaystyle ={\frac {170-45}{340}}{\sqrt {850-450+225}}-{\frac {1125\operatorname {arcsinh} ({\frac {3}{5}}-{\frac {170}{75}})}{68{\sqrt {34}}}}-\left({\frac {-45}{340}}{\sqrt {225}}-{\frac {1125\operatorname {arcsinh} ({\frac {3}{5}})}{68{\sqrt {34}}}}\right)=}
=
125
340
625
−
1125
arcsinh
(
3
⋅
75
−
170
⋅
5
5
⋅
75
)
68
34
−
(
−
9
68
⋅
15
−
1125
arcsinh
(
0.6
)
396.50472884948
)
=
{\displaystyle ={\frac {125}{340}}{\sqrt {625}}-{\frac {1125\operatorname {arcsinh} ({\frac {3\cdot 75-170\cdot 5}{5\cdot 75}})}{68{\sqrt {34}}}}-\left({\frac {-9}{68}}\cdot 15-{\frac {1125\operatorname {arcsinh} (0.6)}{396.50472884948}}\right)=}
=
25
68
⋅
25
−
1125
arcsinh
(
225
−
850
375
)
396.50472884948
−
(
−
135
68
−
1125
⋅
0.5688248987
396.50472884948
)
=
{\displaystyle ={\frac {25}{68}}\cdot 25-{\frac {1125\operatorname {arcsinh} ({\frac {225-850}{375}})}{396.50472884948}}-\left({\frac {-135}{68}}-{\frac {1125\cdot 0.5688248987}{396.50472884948}}\right)=}
=
625
68
−
1125
arcsinh
(
−
625
375
)
396.50472884948
−
(
−
135
68
−
639.928011
396.50472884948
)
=
{\displaystyle ={\frac {625}{68}}-{\frac {1125\operatorname {arcsinh} ({\frac {-625}{375}})}{396.50472884948}}-\left({\frac {-135}{68}}-{\frac {639.928011}{396.50472884948}}\right)=}
=
9.19117647
−
1125
arcsinh
(
−
5
3
)
396.50472884948
−
(
−
1.98529412
−
1.613922772
)
=
{\displaystyle =9.19117647-{\frac {1125\operatorname {arcsinh} (-{\frac {5}{3}})}{396.50472884948}}-(-1.98529412-1.613922772)=}
=
9.19117647
−
1125
⋅
(
−
1.283795663
)
396.50472884948
−
(
−
3.599216892
)
=
{\displaystyle =9.19117647-{\frac {1125\cdot (-1.283795663)}{396.50472884948}}-(-3.599216892)=}
=
9.19117647
+
3.642504151
+
3.599216892
=
16.43289751.
{\displaystyle =9.19117647+3.642504151+3.599216892=16.43289751.}
(Update : Perskaičiavus gaunasi:
(9,1911764705882352941176470588235+3,6425041506487550296517491344981)-(-3,3088235294117647058823529411765-1,6139227719443049309711137193553)=
=12,833680621236990323769396193322-(-4,9227463013560696368534666605317)=17,756426922593059960622862853854.
Update 2 : Ne -3,3088, o -1,9852941176470588235294117647059.)
Pastebime, kad
2
A
/
10
=
2
⋅
16.43289751
/
10
=
3.286579503.
{\displaystyle 2A/10=2\cdot 16.43289751/10=3.286579503.}
Apskaičiuojame viską nepriekaištingai tiksliai su kompiuterio kalkuliatoriumi:
A
=
625
68
−
1125
arcsinh
(
−
5
/
3
)
68
34
−
(
−
135
68
−
1125
arcsinh
(
3
/
5
)
68
34
)
=
{\displaystyle A={\frac {625}{68}}-{\frac {1125\operatorname {arcsinh} (-5/3)}{68{\sqrt {34}}}}-\left({\frac {-135}{68}}-{\frac {1125\operatorname {arcsinh} (3/5)}{68{\sqrt {34}}}}\right)=}
=
12.833680621236990323769396193322
−
(
−
3.5992168895913637545005254840611
)
=
16.432897510828354078269921677383.
{\displaystyle =12.833680621236990323769396193322-(-3.5992168895913637545005254840611)=16.432897510828354078269921677383.}
Randame, kad
A
/
5
=
16.432897510828354078269921677383
/
5
=
3.2865795021656708156539843354766.
{\displaystyle A/5=16.432897510828354078269921677383/5=3.2865795021656708156539843354766.}
Toliau bandome rasti atlikta darbą apeita tiese
y
=
3
−
3
x
5
{\displaystyle y=3-{\frac {3x}{5}}}
integruojant
A
=
−
∮
L
x
d
x
+
y
d
y
.
{\displaystyle A=-\oint _{L}xdx+ydy.}
Randame
d
y
=
−
3
5
d
x
.
{\displaystyle dy=-{\frac {3}{5}}\;dx.}
Turime, kad x integravimo ribos yra 0 iki 5, o y integravimo ribos yra nuo 0 iki 3. Gauname:
A
=
−
∮
L
x
d
x
+
y
d
y
=
−
(
∫
0
5
x
d
x
−
3
5
(
3
−
3
x
5
)
d
x
)
=
−
∫
0
5
(
x
−
3
5
(
3
−
3
x
5
)
)
d
x
=
{\displaystyle A=-\oint _{L}xdx+ydy=-(\int _{0}^{5}x\;dx-{\frac {3}{5}}(3-{\frac {3x}{5}})dx)=-\int _{0}^{5}(x-{\frac {3}{5}}(3-{\frac {3x}{5}}))dx=}
=
−
∫
0
5
(
x
−
9
5
+
9
x
25
)
d
x
=
−
∫
0
5
(
−
9
5
+
25
x
+
9
x
25
)
d
x
=
−
∫
0
5
(
34
x
25
−
9
5
)
d
x
=
{\displaystyle =-\int _{0}^{5}(x-{\frac {9}{5}}+{\frac {9x}{25}})dx=-\int _{0}^{5}(-{\frac {9}{5}}+{\frac {25x+9x}{25}})dx=-\int _{0}^{5}({\frac {34x}{25}}-{\frac {9}{5}})dx=}
=
−
(
34
x
2
25
⋅
2
−
9
5
x
)
|
0
5
=
−
[
(
17
⋅
5
2
25
−
9
5
⋅
5
)
−
(
17
⋅
0
2
25
−
9
5
⋅
0
)
]
=
−
(
17
−
9
)
=
−
8.
{\displaystyle =-({\frac {34x^{2}}{25\cdot 2}}-{\frac {9}{5}}x)|_{0}^{5}=-[({\frac {17\cdot 5^{2}}{25}}-{\frac {9}{5}}\cdot 5)-({\frac {17\cdot 0^{2}}{25}}-{\frac {9}{5}}\cdot 0)]=-(17-9)=-8.}
Akivaizdu, kad atsakymas
A
=
−
8
{\displaystyle A=-8}
yra neteisingas, o atsakymas A=8 elipsei yra teisingas, nes elipsės lankas yra ilgesnis nei tiesės atkarpa pirmame ketvirtyje ir pagal sąlygą jėgos dydis proporcingas atstumui nuo centro, todėl elipsės lanko taškai yra toliau nuo centro nei tiesės
y
=
3
−
3
x
5
{\displaystyle y=3-{\frac {3x}{5}}}
atkarpos taškai. Ir todėl elipsės darbas A=8 yra didesnis už darbą A=3.2865795 tiesės atkarpa.
Pastebime, kad jeigu elipsė būtų apskritimas tai pirmame ketvirtyje atliktas darbas A=0. Taip yra todėl, kad kai x didėja, tada y reikšmės mažėja. Todėl skaičiuoti darbą, ko gero, galėtų būti teisingiau
A
=
∮
L
x
d
x
−
y
d
y
{\displaystyle A=\oint _{L}xdx-ydy}
arba
A
=
∮
L
−
x
d
x
+
y
d
y
.
{\displaystyle A=\oint _{L}-xdx+ydy.}
Tuomet akivaizdu, kad
A
=
a
2
+
b
2
2
=
5
2
+
3
2
2
=
17.
{\displaystyle A={\frac {a^{2}+b^{2}}{2}}={\frac {5^{2}+3^{2}}{2}}=17.}
Tą patį darba gauname ir apeinant tiese:
A
=
∮
L
x
d
x
−
y
d
y
=
∫
0
5
x
d
x
−
−
3
5
(
3
−
3
x
5
)
d
x
=
∫
0
5
(
x
+
3
5
(
3
−
3
x
5
)
)
d
x
=
{\displaystyle A=\oint _{L}xdx-ydy=\int _{0}^{5}x\;dx-{\frac {-3}{5}}(3-{\frac {3x}{5}})dx=\int _{0}^{5}(x+{\frac {3}{5}}(3-{\frac {3x}{5}}))dx=}
=
∫
0
5
(
x
+
9
5
−
9
x
25
)
d
x
=
∫
0
5
(
9
5
+
25
x
−
9
x
25
)
d
x
=
∫
0
5
(
16
x
25
+
9
5
)
d
x
=
{\displaystyle =\int _{0}^{5}(x+{\frac {9}{5}}-{\frac {9x}{25}})dx=\int _{0}^{5}({\frac {9}{5}}+{\frac {25x-9x}{25}})dx=\int _{0}^{5}({\frac {16x}{25}}+{\frac {9}{5}})dx=}
=
(
16
x
2
25
⋅
2
+
9
5
x
)
|
0
5
=
(
8
⋅
5
2
25
+
9
5
⋅
5
)
−
(
17
⋅
0
2
25
+
9
5
⋅
0
)
=
8
+
9
=
17.
{\displaystyle =({\frac {16x^{2}}{25\cdot 2}}+{\frac {9}{5}}x)|_{0}^{5}=({\frac {8\cdot 5^{2}}{25}}+{\frac {9}{5}}\cdot 5)-({\frac {17\cdot 0^{2}}{25}}+{\frac {9}{5}}\cdot 0)=8+9=17.}
Lygiai tą patį darbą gausime ir integruojant taip:
A
=
∮
L
x
d
x
−
y
d
y
=
∫
0
5
x
d
x
+
∫
0
3
y
d
y
=
x
2
2
|
0
5
+
y
2
2
|
0
3
=
25
2
+
9
2
=
17.
{\displaystyle A=\oint _{L}xdx-ydy=\int _{0}^{5}x\;dx+\int _{0}^{3}y\;dy={\frac {x^{2}}{2}}|_{0}^{5}+{\frac {y^{2}}{2}}|_{0}^{3}={\frac {25}{2}}+{\frac {9}{2}}=17.}
Tą patį gausime ir taip integruojant nuo 0 iki 5:
A
=
∫
F
d
F
=
∫
0
5
x
2
+
(
3
−
3
x
5
)
2
d
(
x
2
+
(
3
−
3
x
5
)
2
)
=
{\displaystyle A=\int F\;\mathbf {d} F=\int _{0}^{5}{\sqrt {x^{2}+(3-{\frac {3x}{5}})^{2}}}\;\mathbf {d} \left({\sqrt {x^{2}+(3-{\frac {3x}{5}})^{2}}}\right)=}
=
∫
0
5
x
2
+
(
3
−
3
x
5
)
2
0.5
(
x
2
+
(
3
−
3
x
/
5
)
2
)
−
0.5
(
2
x
+
2
(
3
−
3
x
/
5
)
(
−
0.6
)
)
d
x
=
{\displaystyle =\int _{0}^{5}{\sqrt {x^{2}+(3-{\frac {3x}{5}})^{2}}}0.5(x^{2}+(3-3x/5)^{2})^{-0.5}(2x+2(3-3x/5)(-0.6))\;dx=}
=
∫
0
5
x
2
+
(
3
−
3
x
5
)
2
(
x
2
+
(
3
−
3
x
/
5
)
2
)
−
0.5
(
x
−
0.6
(
3
−
3
x
/
5
)
d
x
=
{\displaystyle =\int _{0}^{5}{\sqrt {x^{2}+(3-{\frac {3x}{5}})^{2}}}(x^{2}+(3-3x/5)^{2})^{-0.5}(x-0.6(3-3x/5)\;dx=}
=
∫
0
5
x
2
+
(
3
−
3
x
5
)
2
(
x
−
1.8
+
0.36
x
)
x
2
+
(
3
−
3
x
/
5
)
2
d
x
=
{\displaystyle =\int _{0}^{5}{\frac {{\sqrt {x^{2}+(3-{\frac {3x}{5}})^{2}}}(x-1.8+0.36x)}{\sqrt {x^{2}+(3-3x/5)^{2}}}}\;dx=}
=
∫
0
5
(
1.36
x
−
1.8
)
d
x
=
(
1.36
x
2
2
−
1.8
x
)
|
0
5
=
{\displaystyle =\int _{0}^{5}(1.36x-1.8)\;dx=(1.36{\frac {x^{2}}{2}}-1.8x)|_{0}^{5}=}
=
[
(
0.68
x
−
1.8
)
x
]
|
0
5
=
(
0.68
⋅
5
−
1.8
)
⋅
5
=
(
3.4
−
1.8
)
⋅
5
=
1.6
⋅
5
=
8.
{\displaystyle =[(0.68x-1.8)x]|_{0}^{5}=(0.68\cdot 5-1.8)\cdot 5=(3.4-1.8)\cdot 5=1.6\cdot 5=8.}
Nustatyti tiesės
y
=
3
−
3
x
5
{\displaystyle y=3-{\frac {3x}{5}}}
masę tik pirmame ketvirtyje. Tiesės tankis
γ
{\displaystyle \gamma }
tolstant tiesės taškams nuo centro (koordinačių pradžios taško O ) didėja proporcingai, t. y.
γ
=
x
2
+
y
2
.
{\displaystyle \gamma ={\sqrt {x^{2}+y^{2}}}.}
Sprendimas . Pasinaudosime masės skaičiavimo formule
m
=
∫
L
γ
1
+
[
y
′
]
2
d
x
=
∫
0
5
x
2
+
y
2
1
+
[
y
′
]
2
d
x
=
{\displaystyle m=\int _{L}\gamma {\sqrt {1+[y']^{2}}}\;dx=\int _{0}^{5}{\sqrt {x^{2}+y^{2}}}{\sqrt {1+[y']^{2}}}\;dx=}
=
∫
0
5
x
2
+
(
3
−
3
x
5
)
2
1
+
(
−
3
5
)
2
d
x
=
{\displaystyle =\int _{0}^{5}{\sqrt {x^{2}+\left(3-{\frac {3x}{5}}\right)^{2}}}{\sqrt {1+\left(-{\frac {3}{5}}\right)^{2}}}\;dx=}
=
∫
0
5
x
2
+
9
−
6
x
5
+
9
x
2
25
1
+
9
25
d
x
=
{\displaystyle =\int _{0}^{5}{\sqrt {x^{2}+9-{\frac {6x}{5}}+{\frac {9x^{2}}{25}}}}{\sqrt {1+{\frac {9}{25}}}}\;dx=}
=
∫
0
5
9
−
6
x
5
+
34
x
2
25
34
25
d
x
.
{\displaystyle =\int _{0}^{5}{\sqrt {9-{\frac {6x}{5}}+{\frac {34x^{2}}{25}}}}{\sqrt {\frac {34}{25}}}\;dx.}
Toliau integruodami gauname:
m
=
(
34
25
34
x
2
−
30
x
+
225
(
x
2
2
−
15
68
)
+
7425
arcsinh
34
x
−
15
15
33
68
34
)
|
0
5
=
{\displaystyle m=\left({\frac {\sqrt {34}}{25}}{\sqrt {34x^{2}-30x+225}}\left({\frac {x^{2}}{2}}-{\frac {15}{68}}\right)+{\frac {7425\operatorname {arcsinh} {\frac {34x-15}{15{\sqrt {33}}}}}{68{\sqrt {34}}}}\right)|_{0}^{5}=}
=
(
34
25
34
⋅
25
−
30
⋅
5
+
225
(
25
2
−
15
68
)
+
7425
arcsinh
34
⋅
5
−
15
15
33
68
34
)
−
(
34
25
34
⋅
0
−
30
⋅
0
+
225
(
0
2
2
−
15
68
)
+
7425
arcsinh
34
⋅
0
−
15
15
33
68
34
)
=
{\displaystyle =\left({\frac {\sqrt {34}}{25}}{\sqrt {34\cdot 25-30\cdot 5+225}}\left({\frac {25}{2}}-{\frac {15}{68}}\right)+{\frac {7425\operatorname {arcsinh} {\frac {34\cdot 5-15}{15{\sqrt {33}}}}}{68{\sqrt {34}}}}\right)-\left({\frac {\sqrt {34}}{25}}{\sqrt {34\cdot 0-30\cdot 0+225}}\left({\frac {0^{2}}{2}}-{\frac {15}{68}}\right)+{\frac {7425\operatorname {arcsinh} {\frac {34\cdot 0-15}{15{\sqrt {33}}}}}{68{\sqrt {34}}}}\right)=}
=
(
34
25
850
−
150
+
225
25
⋅
68
−
30
2
⋅
68
+
7425
arcsinh
170
−
15
15
33
68
34
)
−
(
34
25
225
(
−
15
68
)
+
7425
arcsinh
−
15
15
33
68
34
)
=
{\displaystyle =\left({\frac {\sqrt {34}}{25}}{\sqrt {850-150+225}}{\frac {25\cdot 68-30}{2\cdot 68}}+{\frac {7425\operatorname {arcsinh} {\frac {170-15}{15{\sqrt {33}}}}}{68{\sqrt {34}}}}\right)-\left({\frac {\sqrt {34}}{25}}{\sqrt {225}}\left(-{\frac {15}{68}}\right)+{\frac {7425\operatorname {arcsinh} {\frac {-15}{15{\sqrt {33}}}}}{68{\sqrt {34}}}}\right)=}
=
(
5
34
25
37
1670
136
+
7425
arcsinh
31
3
33
68
34
)
−
(
3
34
5
(
−
15
68
)
+
7425
arcsinh
(
−
1
33
)
68
34
)
=
{\displaystyle =\left({\frac {5{\sqrt {34}}}{25}}{\sqrt {37}}{\frac {1670}{136}}+{\frac {7425\operatorname {arcsinh} {\frac {31}{3{\sqrt {33}}}}}{68{\sqrt {34}}}}\right)-\left({\frac {3{\sqrt {34}}}{5}}\left(-{\frac {15}{68}}\right)+{\frac {7425\operatorname {arcsinh} (-{\frac {1}{\sqrt {33}}})}{68{\sqrt {34}}}}\right)=}
=
(
1258
5
1670
136
+
7425
arcsinh
(
1.798802445
)
396.5047288
)
−
(
−
9
34
68
+
7425
arcsinh
(
−
0.174077656
)
396.5047288
)
=
{\displaystyle =\left({\frac {\sqrt {1258}}{5}}{\frac {1670}{136}}+{\frac {7425\operatorname {arcsinh} (1.798802445)}{396.5047288}}\right)-\left(-{\frac {9{\sqrt {34}}}{68}}+{\frac {7425\operatorname {arcsinh} (-0.174077656)}{396.5047288}}\right)=}
=
(
334
1258
136
+
7425
⋅
1.349859008
396.5047288
)
−
(
−
9
34
68
+
7425
⋅
(
−
0.173210253
)
396.5047288
)
=
{\displaystyle =\left({\frac {334{\sqrt {1258}}}{136}}+{\frac {7425\cdot 1.349859008}{396.5047288}}\right)-\left(-{\frac {9{\sqrt {34}}}{68}}+{\frac {7425\cdot (-0.173210253)}{396.5047288}}\right)=}
=
(
167
1258
68
+
10022.7031344
396.5047288
)
−
(
−
9
34
68
+
−
1286.086127
396.5047288
)
=
{\displaystyle =\left({\frac {167{\sqrt {1258}}}{68}}+{\frac {10022.7031344}{396.5047288}}\right)-\left(-{\frac {9{\sqrt {34}}}{68}}+{\frac {-1286.086127}{396.5047288}}\right)=}
=
(
87.1059615
+
25.27763834
)
−
(
−
0.771743633
−
3.243558105
)
=
{\displaystyle =(87.1059615+25.27763834)-(-0.771743633-3.243558105)=}
=
112.3835998
−
(
−
4.015301739
)
=
116.3989015.
{\displaystyle =112.3835998-(-4.015301739)=116.3989015.}
Perskaičiavus gaunas m=41.4470084394957645512263519847-(-4.015301738572567547333986879663)=45.462310178068332098560338864363.
Wolframo integratoriui varžteliai atsisuko, nes integruojant tą patį taip ir taip nuo 0 iki 5 gauname skirtingus atsakymus atitinkamai:
16.43289751
{\displaystyle 16.43289751}
ir
45.46231018
34
25
=
38.98360936.
{\displaystyle {\frac {45.46231018}{\sqrt {\frac {34}{25}}}}=38.98360936.}
Beje, integruojant taip nuo 0 iki 5 gauname:
(13,865120473473883114631633205975+5,0555276680167165753752595311952)-(-0,66176470588235294117647058823529-0,64871162108625555582601097623286)=
=18,92064814149059969000689273717-(-1,3104763269686084970024815644681)=20,231124468459208187009374301638.
Nustatyti tiesės
y
=
3
−
3
x
5
{\displaystyle y=3-{\frac {3x}{5}}}
masę tik pirmame ketvirtyje. Tiesės tankis
γ
{\displaystyle \gamma }
tolstant tiesės taškams nuo centro (koordinačių pradžios taško O ) didėja proporcingai, t. y.
γ
=
x
2
+
y
2
.
{\displaystyle \gamma ={\sqrt {x^{2}+y^{2}}}.}
Sprendimas . Pasinaudosime masės skaičiavimo formule
m
=
∫
L
γ
1
+
[
y
′
]
2
d
x
=
∫
0
5
x
2
+
y
2
1
+
[
y
′
]
2
d
x
=
{\displaystyle m=\int _{L}\gamma {\sqrt {1+[y']^{2}}}\;dx=\int _{0}^{5}{\sqrt {x^{2}+y^{2}}}{\sqrt {1+[y']^{2}}}\;dx=}
=
∫
0
5
x
2
+
(
3
−
3
x
5
)
2
1
+
(
−
3
5
)
2
d
x
=
{\displaystyle =\int _{0}^{5}{\sqrt {x^{2}+\left(3-{\frac {3x}{5}}\right)^{2}}}{\sqrt {1+\left(-{\frac {3}{5}}\right)^{2}}}\;dx=}
=
∫
0
5
x
2
+
9
−
6
x
5
+
9
x
2
25
1
+
9
25
d
x
=
{\displaystyle =\int _{0}^{5}{\sqrt {x^{2}+9-{\frac {6x}{5}}+{\frac {9x^{2}}{25}}}}{\sqrt {1+{\frac {9}{25}}}}\;dx=}
=
∫
0
5
9
−
6
x
5
+
34
x
2
25
34
25
d
x
.
{\displaystyle =\int _{0}^{5}{\sqrt {9-{\frac {6x}{5}}+{\frac {34x^{2}}{25}}}}{\sqrt {\frac {34}{25}}}\;dx.}
Toliau integruodami gauname:
m
=
34
25
(
34
x
2
−
30
x
+
225
(
x
2
2
−
15
68
)
+
7425
arcsinh
34
x
−
15
15
33
68
34
)
|
0
5
=
{\displaystyle m={\frac {\sqrt {34}}{25}}\left({\sqrt {34x^{2}-30x+225}}\left({\frac {x^{2}}{2}}-{\frac {15}{68}}\right)+{\frac {7425\operatorname {arcsinh} {\frac {34x-15}{15{\sqrt {33}}}}}{68{\sqrt {34}}}}\right)|_{0}^{5}=}
=
34
25
(
34
⋅
25
−
30
⋅
5
+
225
(
25
2
−
15
68
)
+
7425
arcsinh
34
⋅
5
−
15
15
33
68
34
)
−
34
25
(
34
⋅
0
−
30
⋅
0
+
225
(
0
2
2
−
15
68
)
+
7425
arcsinh
34
⋅
0
−
15
15
33
68
34
)
=
{\displaystyle ={\frac {\sqrt {34}}{25}}\left({\sqrt {34\cdot 25-30\cdot 5+225}}\left({\frac {25}{2}}-{\frac {15}{68}}\right)+{\frac {7425\operatorname {arcsinh} {\frac {34\cdot 5-15}{15{\sqrt {33}}}}}{68{\sqrt {34}}}}\right)-{\frac {\sqrt {34}}{25}}\left({\sqrt {34\cdot 0-30\cdot 0+225}}\left({\frac {0^{2}}{2}}-{\frac {15}{68}}\right)+{\frac {7425\operatorname {arcsinh} {\frac {34\cdot 0-15}{15{\sqrt {33}}}}}{68{\sqrt {34}}}}\right)=}
=
34
25
(
850
−
150
+
225
25
⋅
68
−
30
2
⋅
68
+
7425
arcsinh
170
−
15
15
33
68
34
)
−
34
25
(
225
(
−
15
68
)
+
7425
arcsinh
−
15
15
33
68
34
)
=
{\displaystyle ={\frac {\sqrt {34}}{25}}\left({\sqrt {850-150+225}}{\frac {25\cdot 68-30}{2\cdot 68}}+{\frac {7425\operatorname {arcsinh} {\frac {170-15}{15{\sqrt {33}}}}}{68{\sqrt {34}}}}\right)-{\frac {\sqrt {34}}{25}}\left({\sqrt {225}}\left(-{\frac {15}{68}}\right)+{\frac {7425\operatorname {arcsinh} {\frac {-15}{15{\sqrt {33}}}}}{68{\sqrt {34}}}}\right)=}
=
34
25
(
373.46372888228
+
25.27763834
)
−
34
25
(
−
3.3088235294
−
3.243558105
)
=
{\displaystyle ={\frac {\sqrt {34}}{25}}(373.46372888228+25.27763834)-{\frac {\sqrt {34}}{25}}(-3.3088235294-3.243558105)=}
=
34
25
⋅
398.74136722228
−
34
25
(
−
6.5523816344
)
=
405.293749
34
25
=
94.52993411.
{\displaystyle ={\frac {\sqrt {34}}{25}}\cdot 398.74136722228-{\frac {\sqrt {34}}{25}}(-6.5523816344)={\frac {405.293749{\sqrt {34}}}{25}}=94.52993411.}
Wolframo integratoriui varžteliai atsisuko, nes integruojant tą patį taip ir taip nuo 0 iki 5 gauname skirtingus atsakymus atitinkamai:
16.43289751
{\displaystyle 16.43289751}
ir
94.52993411
34
25
=
81.05874977.
{\displaystyle {\frac {94.52993411}{\sqrt {\frac {34}{25}}}}=81.05874977.}
Beje, integruojant taip nuo 0 iki 5 gauname:
(13,865120473473883114631633205975+5,0555276680167165753752595311952)-(-0,66176470588235294117647058823529-0,64871162108625555582601097623286)=
=18,92064814149059969000689273717-(-1,3104763269686084970024815644681)=20,231124468459208187009374301638. Na, bent jau apytiksliai gauname kažką panašaus į
3.286579502
{\displaystyle 3.286579502}
:
m
=
∫
0
5
γ
1
+
[
y
′
]
2
d
x
∫
0
5
1
+
[
y
′
]
2
d
x
=
20.23112447
34
25
34
=
23.59334271
34
=
20.23112447
5
=
4.046224894.
{\displaystyle m={\frac {\int _{0}^{5}\gamma {\sqrt {1+[y']^{2}}}dx}{\int _{0}^{5}{\sqrt {1+[y']^{2}}}dx}}={\frac {20.23112447{\sqrt {\frac {34}{25}}}}{\sqrt {34}}}={\frac {23.59334271}{\sqrt {34}}}={\frac {20.23112447}{5}}=4.046224894.}
Nors šita formulė ir skirta kreivės svorio centro koordinačių nustatymui (
x
C
=
4.046224894
{\displaystyle x_{C}=4.046224894}
), bet sprendžiant iš kai kurių matematikos vadovelių, kreivės masę galima apskaičiuoti, bet tada, matyt, reikia pačiam sugalvoti formulę, pagal kurią skaičiuoti (nebent ten turima galvoje, kad kreivės ilgis lygus masei, o tankis toks pat visuose kreivės taškuose).
Tačiau, ko gero,
x
C
=
m
=
16.43289751
34
25
34
=
19.16388697
34
=
16.43289751
5
=
3.286579502.
{\displaystyle x_{C}=m={\frac {16.43289751{\sqrt {\frac {34}{25}}}}{\sqrt {34}}}={\frac {19.16388697}{\sqrt {34}}}={\frac {16.43289751}{5}}=3.286579502.}
(Taip 1.16619*sqrt(9-18*x/5 +(34*x^2)/25) integruojant gauname 19,163865128930380119022361244004; čia 1,16619=(34/25)^(1/2).)
Nustatyti tiesės
y
=
3
−
3
x
5
{\displaystyle y=3-{\frac {3x}{5}}}
masę tik pirmame ketvirtyje. Tiesės tankis
γ
{\displaystyle \gamma }
tolstant tiesės taškams nuo centro (koordinačių pradžios taško O ) didėja proporcingai, t. y.
γ
=
x
2
+
y
2
.
{\displaystyle \gamma ={\sqrt {x^{2}+y^{2}}}.}
Sprendimas . Pasinaudosime masės skaičiavimo formule
m
=
∫
L
γ
1
+
[
y
′
]
2
d
x
=
∫
0
5
x
2
+
y
2
1
+
[
y
′
]
2
d
x
=
{\displaystyle m=\int _{L}\gamma {\sqrt {1+[y']^{2}}}\;dx=\int _{0}^{5}{\sqrt {x^{2}+y^{2}}}{\sqrt {1+[y']^{2}}}\;dx=}
=
∫
0
5
x
2
+
(
3
−
3
x
5
)
2
1
+
(
−
3
5
)
2
d
x
=
{\displaystyle =\int _{0}^{5}{\sqrt {x^{2}+\left(3-{\frac {3x}{5}}\right)^{2}}}{\sqrt {1+\left(-{\frac {3}{5}}\right)^{2}}}\;dx=}
=
∫
0
5
x
2
+
9
−
18
x
5
+
9
x
2
25
1
+
9
25
d
x
=
{\displaystyle =\int _{0}^{5}{\sqrt {x^{2}+9-{\frac {18x}{5}}+{\frac {9x^{2}}{25}}}}{\sqrt {1+{\frac {9}{25}}}}\;dx=}
=
∫
0
5
9
−
18
x
5
+
34
x
2
25
34
25
d
x
.
{\displaystyle =\int _{0}^{5}{\sqrt {9-{\frac {18x}{5}}+{\frac {34x^{2}}{25}}}}{\sqrt {\frac {34}{25}}}\;dx.}
Toliau integruodami gauname:
m
=
34
25
(
34
x
2
−
90
x
+
225
(
x
2
2
−
45
68
)
+
5625
arcsinh
34
x
−
45
75
68
34
)
|
0
5
=
{\displaystyle m={\frac {\sqrt {34}}{25}}\left({\sqrt {34x^{2}-90x+225}}\left({\frac {x^{2}}{2}}-{\frac {45}{68}}\right)+{\frac {5625\operatorname {arcsinh} {\frac {34x-45}{75}}}{68{\sqrt {34}}}}\right)|_{0}^{5}=}
=
34
25
(
34
⋅
25
−
90
⋅
5
+
225
(
25
2
−
45
68
)
+
5625
arcsinh
34
⋅
5
−
45
75
68
34
)
−
34
25
(
34
⋅
0
−
90
⋅
0
+
225
(
0
2
2
−
45
68
)
+
5625
arcsinh
34
⋅
0
−
45
75
68
34
)
=
{\displaystyle ={\frac {\sqrt {34}}{25}}\left({\sqrt {34\cdot 25-90\cdot 5+225}}\left({\frac {25}{2}}-{\frac {45}{68}}\right)+{\frac {5625\operatorname {arcsinh} {\frac {34\cdot 5-45}{75}}}{68{\sqrt {34}}}}\right)-{\frac {\sqrt {34}}{25}}\left({\sqrt {34\cdot 0-90\cdot 0+225}}\left({\frac {0^{2}}{2}}-{\frac {45}{68}}\right)+{\frac {5625\operatorname {arcsinh} {\frac {34\cdot 0-45}{75}}}{68{\sqrt {34}}}}\right)=}
=
34
25
(
850
−
450
+
225
25
⋅
68
−
90
2
⋅
68
+
5625
arcsinh
170
−
45
75
68
34
)
−
34
25
(
225
(
−
45
68
)
+
5625
arcsinh
−
45
75
68
34
)
=
{\displaystyle ={\frac {\sqrt {34}}{25}}\left({\sqrt {850-450+225}}{\frac {25\cdot 68-90}{2\cdot 68}}+{\frac {5625\operatorname {arcsinh} {\frac {170-45}{75}}}{68{\sqrt {34}}}}\right)-{\frac {\sqrt {34}}{25}}\left({\sqrt {225}}\left(-{\frac {45}{68}}\right)+{\frac {5625\operatorname {arcsinh} {\frac {-45}{75}}}{68{\sqrt {34}}}}\right)=}
=
34
25
(
295.95588235294
+
18.21252075
)
−
34
25
(
−
9.926470588
−
8.0696138597
)
=
{\displaystyle ={\frac {\sqrt {34}}{25}}(295.95588235294+18.21252075)-{\frac {\sqrt {34}}{25}}(-9.926470588-8.0696138597)=}
=
34
25
⋅
314.1684031
−
34
25
(
−
17.99608445
)
=
332.1644875
34
25
=
77.47340592.
{\displaystyle ={\frac {\sqrt {34}}{25}}\cdot 314.1684031-{\frac {\sqrt {34}}{25}}(-17.99608445)={\frac {332.1644875{\sqrt {34}}}{25}}=77.47340592.}
Wolframo integratoriui varžteliai atsisuko, nes integruojant tą patį taip ir taip nuo 0 iki 5 gauname skirtingus atsakymus atitinkamai:
16.43289751
{\displaystyle 16.43289751}
ir
77.47340592
34
25
=
66.4328975.
{\displaystyle {\frac {77.47340592}{\sqrt {\frac {34}{25}}}}=66.4328975.}
Beje, integruojant taip nuo 0 iki 5 gauname:
[34^0.5]*[(45,955882352941176470588235294118+18,21252075324377514825874567249)-(-9,9264705882352941176470588235294-8,0696138597215246548555685967763)]/25=
=[34^0.5]*[64,168403106184951618846980966608-(-17,996084447956818772502627420306)]/25=
=[34^0.5]*82,164487554141770391349608386914/25=19,163886975712642545064105297031. Na, bent jau apytiksliai gauname kažką panašaus į
3.286579502
{\displaystyle 3.286579502}
:
m
=
∫
0
5
γ
1
+
[
y
′
]
2
d
x
∫
0
5
1
+
[
y
′
]
2
d
x
=
19.1638869757
34
25
34
=
19.1638869757
5
=
3.832777395.
{\displaystyle m={\frac {\int _{0}^{5}\gamma {\sqrt {1+[y']^{2}}}dx}{\int _{0}^{5}{\sqrt {1+[y']^{2}}}dx}}={\frac {19.1638869757{\sqrt {\frac {34}{25}}}}{\sqrt {34}}}={\frac {19.1638869757}{5}}=3.832777395.}
Nors šita formulė ir skirta kreivės svorio centro koordinačių nustatymui (
x
C
=
3.832777395
{\displaystyle x_{C}=3.832777395}
), bet sprendžiant iš kai kurių matematikos vadovelių, kreivės masę galima apskaičiuoti, bet tada, matyt, reikia pačiam sugalvoti formulę, pagal kurią skaičiuoti (nebent ten turima galvoje, kad kreivės ilgis lygus masei, o tankis toks pat visuose kreivės taškuose).
Tačiau, ko gero,
x
C
=
m
=
16.43289751
34
25
34
=
19.16388697
34
=
16.43289751
5
=
3.286579502.
{\displaystyle x_{C}=m={\frac {16.43289751{\sqrt {\frac {34}{25}}}}{\sqrt {34}}}={\frac {19.16388697}{\sqrt {34}}}={\frac {16.43289751}{5}}=3.286579502.}
Nustatyti tiesės
y
=
3
−
3
x
5
{\displaystyle y=3-{\frac {3x}{5}}}
masę tik pirmame ketvirtyje. Tiesės tankis
γ
{\displaystyle \gamma }
tolstant tiesės taškams nuo centro (koordinačių pradžios taško O ) didėja proporcingai, t. y.
γ
=
x
2
+
y
2
.
{\displaystyle \gamma ={\sqrt {x^{2}+y^{2}}}.}
Sprendimas . Pasinaudosime masės skaičiavimo formule
m
=
∫
L
γ
1
+
[
y
′
]
2
d
x
=
∫
0
5
x
2
+
y
2
1
+
[
y
′
]
2
d
x
=
{\displaystyle m=\int _{L}\gamma {\sqrt {1+[y']^{2}}}\;dx=\int _{0}^{5}{\sqrt {x^{2}+y^{2}}}{\sqrt {1+[y']^{2}}}\;dx=}
=
∫
0
5
x
2
+
(
3
−
3
x
5
)
2
1
+
(
−
3
5
)
2
d
x
=
{\displaystyle =\int _{0}^{5}{\sqrt {x^{2}+\left(3-{\frac {3x}{5}}\right)^{2}}}{\sqrt {1+\left(-{\frac {3}{5}}\right)^{2}}}\;dx=}
=
∫
0
5
x
2
+
9
−
18
x
5
+
9
x
2
25
1
+
9
25
d
x
=
{\displaystyle =\int _{0}^{5}{\sqrt {x^{2}+9-{\frac {18x}{5}}+{\frac {9x^{2}}{25}}}}{\sqrt {1+{\frac {9}{25}}}}\;dx=}
=
∫
0
5
9
−
18
x
5
+
34
x
2
25
34
25
d
x
.
{\displaystyle =\int _{0}^{5}{\sqrt {9-{\frac {18x}{5}}+{\frac {34x^{2}}{25}}}}{\sqrt {\frac {34}{25}}}\;dx.}
Toliau integruodami gauname:
m
=
34
25
(
34
x
2
−
90
x
+
225
(
x
2
2
−
45
68
)
+
5625
arcsinh
34
x
−
45
75
68
34
)
|
0
5
=
{\displaystyle m={\frac {\sqrt {34}}{25}}\left({\sqrt {34x^{2}-90x+225}}\left({\frac {x^{2}}{2}}-{\frac {45}{68}}\right)+{\frac {5625\operatorname {arcsinh} {\frac {34x-45}{75}}}{68{\sqrt {34}}}}\right)|_{0}^{5}=}
=
34
25
(
34
⋅
25
−
90
⋅
5
+
225
(
25
2
−
45
68
)
+
5625
arcsinh
34
⋅
5
−
45
75
68
34
)
−
34
25
(
34
⋅
0
−
90
⋅
0
+
225
(
0
2
2
−
45
68
)
+
5625
arcsinh
34
⋅
0
−
45
75
68
34
)
=
{\displaystyle ={\frac {\sqrt {34}}{25}}\left({\sqrt {34\cdot 25-90\cdot 5+225}}\left({\frac {25}{2}}-{\frac {45}{68}}\right)+{\frac {5625\operatorname {arcsinh} {\frac {34\cdot 5-45}{75}}}{68{\sqrt {34}}}}\right)-{\frac {\sqrt {34}}{25}}\left({\sqrt {34\cdot 0-90\cdot 0+225}}\left({\frac {0^{2}}{2}}-{\frac {45}{68}}\right)+{\frac {5625\operatorname {arcsinh} {\frac {34\cdot 0-45}{75}}}{68{\sqrt {34}}}}\right)=}
=
34
25
(
850
−
450
+
225
25
⋅
68
−
90
2
⋅
68
+
5625
arcsinh
170
−
45
75
68
34
)
−
34
25
(
225
(
−
45
68
)
+
5625
arcsinh
−
45
75
68
34
)
=
{\displaystyle ={\frac {\sqrt {34}}{25}}\left({\sqrt {850-450+225}}{\frac {25\cdot 68-90}{2\cdot 68}}+{\frac {5625\operatorname {arcsinh} {\frac {170-45}{75}}}{68{\sqrt {34}}}}\right)-{\frac {\sqrt {34}}{25}}\left({\sqrt {225}}\left(-{\frac {45}{68}}\right)+{\frac {5625\operatorname {arcsinh} {\frac {-45}{75}}}{68{\sqrt {34}}}}\right)=}
=
34
25
(
295.95588235294
+
18.21252075
)
−
34
25
(
−
9.926470588
−
8.0696138597
)
=
{\displaystyle ={\frac {\sqrt {34}}{25}}(295.95588235294+18.21252075)-{\frac {\sqrt {34}}{25}}(-9.926470588-8.0696138597)=}
=
34
25
⋅
314.1684031
−
34
25
(
−
17.99608445
)
=
332.1644875
34
25
=
77.47340592.
{\displaystyle ={\frac {\sqrt {34}}{25}}\cdot 314.1684031-{\frac {\sqrt {34}}{25}}(-17.99608445)={\frac {332.1644875{\sqrt {34}}}{25}}=77.47340592.}
Wolframo integratoriui varžteliai atsisuko, nes integruojant tą patį taip ir taip nuo 0 iki 5 gauname skirtingus atsakymus atitinkamai:
16.43289751
{\displaystyle 16.43289751}
ir
77.47340592
34
25
=
66.4328975.
{\displaystyle {\frac {77.47340592}{\sqrt {\frac {34}{25}}}}=66.4328975.}
Beje, integruojant taip nuo 0 iki 5 gauname:
[34^0.5]*[(45,955882352941176470588235294118+18,21252075324377514825874567249)-(-9,9264705882352941176470588235294-8,0696138597215246548555685967763)]/25=
=[34^0.5]*[64,168403106184951618846980966608-(-17,996084447956818772502627420306)]/25=
=[34^0.5]*82,164487554141770391349608386914/25=19,163886975712642545064105297031.
Wolframo integratorius duoda keistus sutapimus:
m
=
∫
0
5
γ
d
x
∫
0
5
1
+
[
y
′
]
2
d
x
=
19.1638869757
34
=
3.286579502.
{\displaystyle m={\frac {\int _{0}^{5}\gamma dx}{\int _{0}^{5}{\sqrt {1+[y']^{2}}}dx}}={\frac {19.1638869757}{\sqrt {34}}}=3.286579502.}
Nors formulė (
∫
0
5
γ
1
+
[
y
′
]
2
d
x
∫
0
5
1
+
[
y
′
]
2
d
x
{\displaystyle {\frac {\int _{0}^{5}\gamma {\sqrt {1+[y']^{2}}}dx}{\int _{0}^{5}{\sqrt {1+[y']^{2}}}dx}}}
) ir skirta kreivės svorio centro koordinatės nustatymui (
x
C
{\displaystyle x_{C}}
), bet sprendžiant iš kai kurių matematikos vadovelių, kreivės masę galima apskaičiuoti, bet tada, matyt, reikia pačiam sugalvoti formulę, pagal kurią skaičiuoti (nebent ten turima galvoje, kad kreivės ilgis lygus masei, o tankis toks pat visuose kreivės taškuose).
Tačiau, ko gero,
x
C
=
m
=
∫
0
5
γ
1
+
[
y
′
]
2
d
x
∫
0
5
1
+
[
y
′
]
2
d
x
=
16.43289751
34
25
34
=
19.16388697
34
=
16.43289751
5
=
3.286579502.
{\displaystyle x_{C}=m={\frac {\int _{0}^{5}\gamma {\sqrt {1+[y']^{2}}}dx}{\int _{0}^{5}{\sqrt {1+[y']^{2}}}dx}}={\frac {16.43289751{\sqrt {\frac {34}{25}}}}{\sqrt {34}}}={\frac {19.16388697}{\sqrt {34}}}={\frac {16.43289751}{5}}=3.286579502.}
Nustatyti tiesės
y
=
3
−
3
x
5
{\displaystyle y=3-{\frac {3x}{5}}}
masę tik pirmame ketvirtyje. Tiesės tankis
γ
{\displaystyle \gamma }
tolstant tiesės taškams nuo centro (koordinačių pradžios taško O ) didėja proporcingai, t. y.
γ
=
x
2
+
y
2
.
{\displaystyle \gamma ={\sqrt {x^{2}+y^{2}}}.}
Sprendimas . Pasinaudosime masės skaičiavimo formule
m
=
∫
L
γ
1
+
[
y
′
]
2
d
x
=
∫
0
5
x
2
+
y
2
1
+
[
y
′
]
2
d
x
=
{\displaystyle m=\int _{L}\gamma {\sqrt {1+[y']^{2}}}\;dx=\int _{0}^{5}{\sqrt {x^{2}+y^{2}}}{\sqrt {1+[y']^{2}}}\;dx=}
=
∫
0
5
x
2
+
(
3
−
3
x
5
)
2
1
+
(
−
3
5
)
2
d
x
=
{\displaystyle =\int _{0}^{5}{\sqrt {x^{2}+\left(3-{\frac {3x}{5}}\right)^{2}}}{\sqrt {1+\left(-{\frac {3}{5}}\right)^{2}}}\;dx=}
=
∫
0
5
x
2
+
9
−
18
x
5
+
9
x
2
25
1
+
9
25
d
x
=
{\displaystyle =\int _{0}^{5}{\sqrt {x^{2}+9-{\frac {18x}{5}}+{\frac {9x^{2}}{25}}}}{\sqrt {1+{\frac {9}{25}}}}\;dx=}
=
∫
0
5
9
−
18
x
5
+
34
x
2
25
34
25
d
x
.
{\displaystyle =\int _{0}^{5}{\sqrt {9-{\frac {18x}{5}}+{\frac {34x^{2}}{25}}}}{\sqrt {\frac {34}{25}}}\;dx.}
Toliau integruodami gauname:
m
=
34
25
(
34
x
2
−
90
x
+
225
(
x
2
2
−
45
68
)
+
5625
arcsinh
34
x
−
45
75
68
34
)
|
0
5
=
{\displaystyle m={\frac {\sqrt {34}}{25}}\left({\sqrt {34x^{2}-90x+225}}\left({\frac {x^{2}}{2}}-{\frac {45}{68}}\right)+{\frac {5625\operatorname {arcsinh} {\frac {34x-45}{75}}}{68{\sqrt {34}}}}\right)|_{0}^{5}=}
=
34
25
(
34
⋅
25
−
90
⋅
5
+
225
(
25
2
−
45
68
)
+
5625
arcsinh
34
⋅
5
−
45
75
68
34
)
−
34
25
(
34
⋅
0
−
90
⋅
0
+
225
(
0
2
2
−
45
68
)
+
5625
arcsinh
34
⋅
0
−
45
75
68
34
)
=
{\displaystyle ={\frac {\sqrt {34}}{25}}\left({\sqrt {34\cdot 25-90\cdot 5+225}}\left({\frac {25}{2}}-{\frac {45}{68}}\right)+{\frac {5625\operatorname {arcsinh} {\frac {34\cdot 5-45}{75}}}{68{\sqrt {34}}}}\right)-{\frac {\sqrt {34}}{25}}\left({\sqrt {34\cdot 0-90\cdot 0+225}}\left({\frac {0^{2}}{2}}-{\frac {45}{68}}\right)+{\frac {5625\operatorname {arcsinh} {\frac {34\cdot 0-45}{75}}}{68{\sqrt {34}}}}\right)=}
=
34
25
(
850
−
450
+
225
25
⋅
68
−
90
2
⋅
68
+
5625
arcsinh
170
−
45
75
68
34
)
−
34
25
(
225
(
−
45
68
)
+
5625
arcsinh
−
45
75
68
34
)
=
{\displaystyle ={\frac {\sqrt {34}}{25}}\left({\sqrt {850-450+225}}{\frac {25\cdot 68-90}{2\cdot 68}}+{\frac {5625\operatorname {arcsinh} {\frac {170-45}{75}}}{68{\sqrt {34}}}}\right)-{\frac {\sqrt {34}}{25}}\left({\sqrt {225}}\left(-{\frac {45}{68}}\right)+{\frac {5625\operatorname {arcsinh} {\frac {-45}{75}}}{68{\sqrt {34}}}}\right)=}
=
34
25
(
295.95588235294
+
18.21252075
)
−
34
25
(
−
9.926470588
−
8.0696138597
)
=
{\displaystyle ={\frac {\sqrt {34}}{25}}(295.95588235294+18.21252075)-{\frac {\sqrt {34}}{25}}(-9.926470588-8.0696138597)=}
=
34
25
⋅
314.1684031
−
34
25
(
−
17.99608445
)
=
332.1644875
34
25
=
77.47340592.
{\displaystyle ={\frac {\sqrt {34}}{25}}\cdot 314.1684031-{\frac {\sqrt {34}}{25}}(-17.99608445)={\frac {332.1644875{\sqrt {34}}}{25}}=77.47340592.}
Wolframo integratoriui varžteliai atsisuko, nes integruojant tą patį taip ir taip nuo 0 iki 5 gauname skirtingus atsakymus atitinkamai:
16.43289751
{\displaystyle 16.43289751}
ir
77.47340592
34
25
=
66.4328975.
{\displaystyle {\frac {77.47340592}{\sqrt {\frac {34}{25}}}}=66.4328975.}
Beje, integruojant taip nuo 0 iki 5 gauname:
[34^0.5]*[(45,955882352941176470588235294118+18,21252075324377514825874567249)-(-9,9264705882352941176470588235294-8,0696138597215246548555685967763)]/25=
=[34^0.5]*[64,168403106184951618846980966608-(-17,996084447956818772502627420306)]/25=
=[34^0.5]*82,164487554141770391349608386914/25=19,163886975712642545064105297031.
Wolframo integratorius duoda keistus sutapimus:
m
=
∫
0
5
γ
d
x
∫
0
5
1
+
[
y
′
]
2
d
x
=
19.1638869757
34
=
3.286579502.
{\displaystyle m={\frac {\int _{0}^{5}\gamma dx}{\int _{0}^{5}{\sqrt {1+[y']^{2}}}dx}}={\frac {19.1638869757}{\sqrt {34}}}=3.286579502.}
Nors formulė (
∫
0
5
γ
1
+
[
y
′
]
2
d
x
∫
0
5
1
+
[
y
′
]
2
d
x
{\displaystyle {\frac {\int _{0}^{5}\gamma {\sqrt {1+[y']^{2}}}dx}{\int _{0}^{5}{\sqrt {1+[y']^{2}}}dx}}}
) ir skirta kreivės svorio centro koordinatės nustatymui (
x
C
{\displaystyle x_{C}}
), bet sprendžiant iš kai kurių matematikos vadovelių, kreivės masę galima apskaičiuoti, bet tada, matyt, reikia pačiam sugalvoti formulę, pagal kurią skaičiuoti (nebent ten turima galvoje, kad kreivės ilgis lygus masei, o tankis toks pat visuose kreivės taškuose).
Tačiau, ko gero,
x
C
=
m
=
∫
0
5
γ
1
+
[
y
′
]
2
d
x
∫
0
5
1
+
[
y
′
]
2
d
x
=
16.43289751
34
25
34
=
19.16388697
34
=
16.43289751
5
=
3.286579502.
{\displaystyle x_{C}=m={\frac {\int _{0}^{5}\gamma {\sqrt {1+[y']^{2}}}dx}{\int _{0}^{5}{\sqrt {1+[y']^{2}}}dx}}={\frac {16.43289751{\sqrt {\frac {34}{25}}}}{\sqrt {34}}}={\frac {19.16388697}{\sqrt {34}}}={\frac {16.43289751}{5}}=3.286579502.}
Kad išsiaiškinti teisybę pasinaudosime integralų lentele :
∫
a
x
2
+
b
x
+
c
d
x
=
b
+
2
a
x
4
a
a
x
2
+
b
x
+
c
+
4
a
c
−
b
2
8
a
3
/
2
ln
|
2
a
x
+
b
+
2
a
(
a
x
2
+
b
x
+
c
)
|
.
{\displaystyle \int {\sqrt {ax^{2}+bx+c}}\;dx={\frac {b+2ax}{4a}}{\sqrt {ax^{2}+bx+c}}+{\frac {4ac-b^{2}}{8a^{3/2}}}\ln |2ax+b+2{\sqrt {a(ax^{2}+bx+c)}}|.}
Tada integruojame:
∫
L
γ
1
+
[
y
′
]
2
d
x
=
∫
0
5
x
2
+
y
2
1
+
[
y
′
]
2
d
x
=
{\displaystyle \int _{L}\gamma {\sqrt {1+[y']^{2}}}\;dx=\int _{0}^{5}{\sqrt {x^{2}+y^{2}}}{\sqrt {1+[y']^{2}}}\;dx=}
=
∫
0
5
x
2
+
(
3
−
3
x
5
)
2
1
+
(
−
3
5
)
2
d
x
=
{\displaystyle =\int _{0}^{5}{\sqrt {x^{2}+\left(3-{\frac {3x}{5}}\right)^{2}}}{\sqrt {1+\left(-{\frac {3}{5}}\right)^{2}}}\;dx=}
=
∫
0
5
x
2
+
9
−
18
x
5
+
9
x
2
25
1
+
9
25
d
x
=
{\displaystyle =\int _{0}^{5}{\sqrt {x^{2}+9-{\frac {18x}{5}}+{\frac {9x^{2}}{25}}}}{\sqrt {1+{\frac {9}{25}}}}\;dx=}
=
∫
0
5
9
−
18
x
5
+
34
x
2
25
34
25
d
x
=
{\displaystyle =\int _{0}^{5}{\sqrt {9-{\frac {18x}{5}}+{\frac {34x^{2}}{25}}}}{\sqrt {\frac {34}{25}}}\;dx=}
=
34
5
∫
0
5
34
25
x
2
−
18
5
x
+
9
d
x
=
{\displaystyle ={\frac {\sqrt {34}}{5}}\int _{0}^{5}{\sqrt {{\frac {34}{25}}x^{2}-{\frac {18}{5}}x+9}}\;dx=}
=
34
5
∫
0
5
1.36
x
2
−
3.6
x
+
9
d
x
=
{\displaystyle ={\frac {\sqrt {34}}{5}}\int _{0}^{5}{\sqrt {1.36x^{2}-3.6x+9}}\;dx=}
=
34
5
(
−
3.6
+
2
⋅
1.36
x
4
⋅
1.36
1.36
x
2
−
3.6
x
+
9
+
4
⋅
1.36
⋅
9
−
(
−
3.6
)
2
8
⋅
1.36
3
/
2
ln
|
2
⋅
1.36
x
−
3.6
+
2
1.36
(
1.36
x
2
−
3.6
x
+
9
)
|
)
|
0
5
=
{\displaystyle ={\frac {\sqrt {34}}{5}}\left({\frac {-3.6+2\cdot 1.36x}{4\cdot 1.36}}{\sqrt {1.36x^{2}-3.6x+9}}+{\frac {4\cdot 1.36\cdot 9-(-3.6)^{2}}{8\cdot 1.36^{3/2}}}\ln |2\cdot 1.36x-3.6+2{\sqrt {1.36(1.36x^{2}-3.6x+9)}}|\right)|_{0}^{5}=}
=
34
5
(
−
3.6
+
2.72
x
5.44
1.36
x
2
−
3.6
x
+
9
+
48.96
−
12.96
8
⋅
2.515456
1
/
2
ln
|
2.72
x
−
3.6
+
2
1.36
(
1.36
x
2
−
3.6
x
+
9
)
|
)
|
0
5
=
{\displaystyle ={\frac {\sqrt {34}}{5}}\left({\frac {-3.6+2.72x}{5.44}}{\sqrt {1.36x^{2}-3.6x+9}}+{\frac {48.96-12.96}{8\cdot 2.515456^{1/2}}}\ln |2.72x-3.6+2{\sqrt {1.36(1.36x^{2}-3.6x+9)}}|\right)|_{0}^{5}=}
=
34
5
(
−
3.6
+
2.72
x
5.44
1.36
x
2
−
3.6
x
+
9
+
36
12.68815132
ln
|
2.72
x
−
3.6
+
2
1.36
(
1.36
x
2
−
3.6
x
+
9
)
|
)
|
0
5
=
{\displaystyle ={\frac {\sqrt {34}}{5}}\left({\frac {-3.6+2.72x}{5.44}}{\sqrt {1.36x^{2}-3.6x+9}}+{\frac {36}{12.68815132}}\ln |2.72x-3.6+2{\sqrt {1.36(1.36x^{2}-3.6x+9)}}|\right)|_{0}^{5}=}
=
34
5
(
−
3.6
+
2.72
⋅
5
5.44
1.36
⋅
25
−
3.6
⋅
5
+
9
+
2.8372927689
ln
|
2.72
⋅
5
−
3.6
+
2
1.36
(
1.36
⋅
25
−
3.6
⋅
5
+
9
)
|
)
−
{\displaystyle ={\frac {\sqrt {34}}{5}}\left({\frac {-3.6+2.72\cdot 5}{5.44}}{\sqrt {1.36\cdot 25-3.6\cdot 5+9}}+2.8372927689\ln |2.72\cdot 5-3.6+2{\sqrt {1.36(1.36\cdot 25-3.6\cdot 5+9)}}|\right)-}
−
34
5
(
−
3.6
+
2.72
⋅
0
5.44
1.36
⋅
0
2
−
3.6
⋅
0
+
9
+
2.8372927689
ln
|
2.72
⋅
0
−
3.6
+
2
1.36
(
1.36
⋅
0
2
−
3.6
⋅
0
+
9
)
|
)
=
{\displaystyle -{\frac {\sqrt {34}}{5}}\left({\frac {-3.6+2.72\cdot 0}{5.44}}{\sqrt {1.36\cdot 0^{2}-3.6\cdot 0+9}}+2.8372927689\ln |2.72\cdot 0-3.6+2{\sqrt {1.36(1.36\cdot 0^{2}-3.6\cdot 0+9)}}|\right)=}
=
34
5
(
10
5.44
34
−
18
+
9
+
2.8372927689
ln
|
13.6
−
3.6
+
2
1.36
(
34
−
18
+
9
)
|
)
−
{\displaystyle ={\frac {\sqrt {34}}{5}}\left({\frac {10}{5.44}}{\sqrt {34-18+9}}+2.8372927689\ln |13.6-3.6+2{\sqrt {1.36(34-18+9)}}|\right)-}
−
34
5
(
−
3.6
5.44
9
+
2.8372927689
ln
|
−
3.6
+
2
1.36
⋅
9
|
)
=
{\displaystyle -{\frac {\sqrt {34}}{5}}\left({\frac {-3.6}{5.44}}{\sqrt {9}}+2.8372927689\ln |-3.6+2{\sqrt {1.36\cdot 9}}|\right)=}
=
34
5
(
10
5.44
25
+
2.8372927689
ln
|
10
+
2
1.36
⋅
25
|
)
−
34
5
(
−
3.6
5.44
⋅
3
+
2.8372927689
ln
|
−
3.6
+
2
12.24
|
)
=
{\displaystyle ={\frac {\sqrt {34}}{5}}\left({\frac {10}{5.44}}{\sqrt {25}}+2.8372927689\ln |10+2{\sqrt {1.36\cdot 25}}|\right)-{\frac {\sqrt {34}}{5}}\left({\frac {-3.6}{5.44}}\cdot 3+2.8372927689\ln |-3.6+2{\sqrt {12.24}}|\right)=}
=
34
5
(
50
5.44
+
2.8372927689
ln
|
10
+
2
34
|
)
−
34
5
(
−
10.8
5.44
+
2.8372927689
ln
|
−
3.6
+
2
12.24
|
)
=
{\displaystyle ={\frac {\sqrt {34}}{5}}\left({\frac {50}{5.44}}+2.8372927689\ln |10+2{\sqrt {34}}|\right)-{\frac {\sqrt {34}}{5}}\left({\frac {-10.8}{5.44}}+2.8372927689\ln |-3.6+2{\sqrt {12.24}}|\right)=}
=
34
5
(
9.191176471
+
2.8372927689
ln
|
21.66190379
|
)
−
34
5
(
−
10.8
5.44
+
2.8372927689
ln
|
−
3.6
+
2
12.24
|
)
=
{\displaystyle ={\frac {\sqrt {34}}{5}}\left(9.191176471+2.8372927689\ln |21.66190379|\right)-{\frac {\sqrt {34}}{5}}\left({\frac {-10.8}{5.44}}+2.8372927689\ln |-3.6+2{\sqrt {12.24}}|\right)=}
=
34
5
(
9.191176471
+
8.726250336
)
−
34
5
(
−
1.985294118
+
3.469823414
)
=
{\displaystyle ={\frac {\sqrt {34}}{5}}(9.191176471+8.726250336)-{\frac {\sqrt {34}}{5}}(-1.985294118+3.469823414)=}
=
34
5
⋅
17.91742681
−
34
5
⋅
1.484529296
=
16.43289751
34
5
=
19.16388698.
{\displaystyle ={\frac {\sqrt {34}}{5}}\cdot 17.91742681-{\frac {\sqrt {34}}{5}}\cdot 1.484529296={\frac {16.43289751{\sqrt {34}}}{5}}=19.16388698.}
Vadinasi, randame tiesės masę kaip prašyta sąlygoje:
m
=
∫
0
5
γ
1
+
[
y
′
]
2
d
x
∫
0
5
1
+
[
y
′
]
2
d
x
=
19.16388698
∫
0
5
1
+
(
−
3
5
)
2
d
x
=
19.16388698
∫
0
5
1
+
9
25
d
x
=
19.16388698
∫
0
5
34
25
d
x
=
{\displaystyle m={\frac {\int _{0}^{5}\gamma {\sqrt {1+[y']^{2}}}dx}{\int _{0}^{5}{\sqrt {1+[y']^{2}}}dx}}={\frac {19.16388698}{\int _{0}^{5}{\sqrt {1+\left(-{\frac {3}{5}}\right)^{2}}}dx}}={\frac {19.16388698}{\int _{0}^{5}{\sqrt {1+{\frac {9}{25}}}}dx}}={\frac {19.16388698}{\int _{0}^{5}{\sqrt {\frac {34}{25}}}dx}}=}
=
19.16388698
34
5
x
|
0
5
=
19.16388698
34
5
⋅
5
−
34
5
⋅
0
=
19.16388698
34
=
3.286579502.
{\displaystyle ={\frac {19.16388698}{{\frac {\sqrt {34}}{5}}x|_{0}^{5}}}={\frac {19.16388698}{{\frac {\sqrt {34}}{5}}\cdot 5-{\frac {\sqrt {34}}{5}}\cdot 0}}={\frac {19.16388698}{\sqrt {34}}}=3.286579502.}
Jėgos darbas padarytas judant kreive plokštumoje apskaičiuojamas pagal formulę
A
=
∫
B
C
P
d
x
+
Q
d
y
.
{\displaystyle A=\int _{BC}Pdx+Qdy.}
Jėgos darbas padarytas judant erdvine kreive apskaičiuojamas taip:
A
=
∫
B
C
P
d
x
+
Q
d
y
+
R
d
z
.
{\displaystyle A=\int _{BC}Pdx+Qdy+Rdz.}
Apskaičiuosime darbą jėgos
F
(
x
,
y
)
{\displaystyle F(x,y)}
persikeliant materialiam taškui elipse teigiama kryptimi, jeigu jėga kiekviename taške (x; y) elipsės nukreipta į elipsės centrą ir pagal dydį lygi atstumui nuo taško (x; y) iki elipsės centro.
Pagal sąlyga,
|
F
(
x
,
y
)
|
=
x
2
+
y
2
;
{\displaystyle |F(x,y)|={\sqrt {x^{2}+y^{2}}};}
Jėgos F(x, y) koordinatės tokios:
P
=
−
x
,
{\displaystyle P=-x,}
Q
=
−
y
{\displaystyle Q=-y}
[ženklas "
−
{\displaystyle -}
" paaiškinamas tuo, kad jėga nukreipta į tašką (0; 0)]. Pagal formulę turime
A
=
−
∮
L
x
d
x
+
y
d
y
,
{\displaystyle A=-\oint _{L}xdx+ydy,}
kur L - elipsė
x
=
a
cos
t
,
y
=
b
sin
t
,
{\displaystyle x=a\cos t,\;y=b\sin t,}
0
≤
t
≤
2
π
.
{\displaystyle 0\leq t\leq 2\pi .}
Todėl
A
=
−
∫
0
2
π
a
cos
t
(
−
a
sin
t
)
d
t
+
b
sin
(
t
)
b
cos
(
t
)
d
t
=
−
∫
0
2
π
(
b
2
−
a
2
)
sin
(
t
)
cos
t
d
t
=
{\displaystyle A=-\int _{0}^{2\pi }a\cos t(-a\sin t)dt+b\sin(t)b\cos(t)dt=-\int _{0}^{2\pi }(b^{2}-a^{2})\sin(t)\cos t\;dt=}
=
a
2
−
b
2
2
∫
0
2
π
sin
(
2
t
)
d
t
=
a
2
−
b
2
4
(
−
cos
(
2
t
)
)
|
0
2
π
=
0.
{\displaystyle ={a^{2}-b^{2} \over 2}\int _{0}^{2\pi }\sin(2t)dt={a^{2}-b^{2} \over 4}(-\cos(2t))|_{0}^{2\pi }=0.}
Jei t keistusi nuo 0 iki
π
2
,
{\displaystyle {\pi \over 2},}
integralas butu lygus
a
2
−
b
2
4
(
−
cos
(
2
t
)
)
|
0
π
2
=
a
2
−
b
2
4
(
−
cos
(
2
⋅
π
2
)
)
−
a
2
−
b
2
4
(
−
cos
(
2
⋅
0
)
)
=
{\displaystyle {a^{2}-b^{2} \over 4}(-\cos(2t))|_{0}^{\pi \over 2}={a^{2}-b^{2} \over 4}(-\cos(2\cdot {\pi \over 2}))-{a^{2}-b^{2} \over 4}(-\cos(2\cdot 0))=}
=
a
2
−
b
2
4
(
−
cos
π
+
cos
(
0
)
)
=
a
2
−
b
2
4
(
−
(
−
1
)
+
1
)
=
a
2
−
b
2
2
.
{\displaystyle ={a^{2}-b^{2} \over 4}(-\cos \pi +\cos(0))={a^{2}-b^{2} \over 4}(-(-1)+1)={a^{2}-b^{2} \over 2}.}
Tarkime, jei
a
=
5
,
b
=
3
,
{\displaystyle a=5,\;b=3,}
tai padarytas darbas pirmame ketvirtyje yra
A
=
a
2
−
b
2
2
=
5
2
−
3
2
2
=
25
−
9
2
=
16
2
=
8.
{\displaystyle A={a^{2}-b^{2} \over 2}={5^{2}-3^{2} \over 2}={\frac {25-9}{2}}={\frac {16}{2}}=8.}
Kad patikrinti ar apskaičiuota teisingai reikia sudėti visas x reikšmes ant elipsės linijos pirmame ketvirtyje. Taip pat reikia sudėti visas y reikšmes ant elipsės linijos pirmame ketvirtyje. Galiausiai reikia sudėti sumas x ir y reikšmių, kad gauti darbą A pirmame ketvirtyje.
Arba tiesiog darbas yra lygus
A
=
1
100
∑
n
=
1
100
x
n
2
+
y
n
2
;
{\displaystyle A={\frac {1}{100}}\sum _{n=1}^{100}{\sqrt {x_{n}^{2}+y_{n}^{2}}};}
čia
x
n
{\displaystyle x_{n}}
yra visos x reikšmės ant elipsės linijos pirmame ketvirtyje nuo 0 iki a ; analogiškai
y
n
{\displaystyle y_{n}}
yra visos y reikšmės ant elipsės linijos pirmame ketvirtyje nuo 0 iki b .
Kuris iš šių variantų yra darbas A , paaiškės pasumavus ir paskaičiavus. Sutapimas ar ne, bet
A
=
3
+
5
=
8
{\displaystyle A=3+5=8}
pagal pirmą variantą. Na, o pagal antrą variantą turime:
A
=
1
10
∑
n
=
1
10
(
n
(
3
/
10
)
)
2
+
(
(
10
−
n
)
(
5
/
10
)
)
2
=
{\displaystyle A={\frac {1}{10}}\sum _{n=1}^{10}{\sqrt {(n(3/10))^{2}+((10-n)(5/10))^{2}}}=}
A
=
(
0.3
2
+
5
2
+
0.6
2
+
4.5
2
+
0.9
2
+
4
2
+
1.2
2
+
3.5
2
+
1.5
2
+
3
2
+
{\displaystyle A=({\sqrt {0.3^{2}+5^{2}}}+{\sqrt {0.6^{2}+4.5^{2}}}+{\sqrt {0.9^{2}+4^{2}}}+{\sqrt {1.2^{2}+3.5^{2}}}+{\sqrt {1.5^{2}+3^{2}}}+}
+
1.8
2
+
2.5
2
+
2.1
2
+
2
2
+
2.4
2
+
1.5
2
+
2.7
2
+
1
2
+
3
2
+
0.5
2
)
/
10
=
{\displaystyle +{\sqrt {1.8^{2}+2.5^{2}}}+{\sqrt {2.1^{2}+2^{2}}}+{\sqrt {2.4^{2}+1.5^{2}}}+{\sqrt {2.7^{2}+1^{2}}}+{\sqrt {3^{2}+0.5^{2}}})/10=}
=
(
5.0089919
+
4.539823785
+
4.1
+
3.7
+
3.354101966
+
{\displaystyle =(5.0089919+4.539823785+4.1+3.7+3.354101966+}
+
3.08058436
+
2.9
+
2.83019434
+
2.879236
+
3.041381265
)
/
10
=
{\displaystyle +3.08058436+2.9+2.83019434+2.879236+3.041381265)/10=}
=
35.43431361
/
10
=
3.543431361.
{\displaystyle =35.43431361/10=3.543431361.}
Iš tikro, ko gero, mes apskaičiuojame tokiu budu ne darbą atlikta apeinant elipsės liniją pirmame ketvirtyje, o darbą atlikta apeinant tiesę pirmame ketvirtyje. Štai kodas programos "Free Pascal" (FreePascal IDE for Win32 for i386; Target CPU: i386; Version 1.0.12 2011/04/23; <Compiler Version 2.4.4>; <Debugger GDB 7.2>; Copyright <C> 1998-2009):
var
a:longint;
c:real;
begin
for a:=1 to 10
do
c:=c+0.1*sqrt(sqr(a*0.3)+sqr((11-a)*0.5));
writeln(c);
readln;
end.
gauname
A
=
3.54343136406170.
{\displaystyle A=3.54343136406170.}
Panaudojus šį kodą:
var
a:longint;
c:real;
begin
for a:=1 to 1000000000 do
c:=c+0.000000001*sqrt(sqr(a*0.000000003)+sqr((1000000001-a)*0.000000005));
writeln(c);
readln;
end.
gauname atsakymą
A
=
3.28657950471730
{\displaystyle A=3.28657950471730}
po 22 sekundžių ant 2.6 GHz procesoriaus.
Panaudojus šį (teisingesnį) kodą:
var
a:longint;
c:real;
begin
for a:=0 to 1000000000 do
c:=c+sqrt(sqr(a*0.000000003)+sqr((1000000000-a)*0.000000005))/1000000001;
writeln(c);
readln;
end.
gauname atsakymą
A
=
3.28657950285701
{\displaystyle A=3.28657950285701}
po 25 sekundžių ant 2.6 GHz procesoriaus.
Integruojant gauname:
A
=
∫
0
5
x
2
+
(
3
−
3
x
5
)
2
d
x
=
{\displaystyle A=\int _{0}^{5}{\sqrt {x^{2}+(3-{\frac {3x}{5}})^{2}}}dx=}
=
1
340
(
34
x
−
45
)
34
x
2
−
90
x
+
225
−
1125
arcsinh
(
3
5
−
34
x
75
)
68
34
|
0
5
=
{\displaystyle ={\frac {1}{340}}(34x-45){\sqrt {34x^{2}-90x+225}}-{\frac {1125\operatorname {arcsinh} ({\frac {3}{5}}-{\frac {34x}{75}})}{68{\sqrt {34}}}}|_{0}^{5}=}
=
34
⋅
5
−
45
340
34
⋅
5
2
−
90
⋅
5
+
225
−
1125
arcsinh
(
3
5
−
34
⋅
5
75
)
68
34
−
(
34
⋅
0
−
45
340
34
⋅
0
2
−
90
⋅
0
+
225
−
1125
arcsinh
(
3
5
−
34
⋅
0
75
)
68
34
)
=
{\displaystyle ={\frac {34\cdot 5-45}{340}}{\sqrt {34\cdot 5^{2}-90\cdot 5+225}}-{\frac {1125\operatorname {arcsinh} ({\frac {3}{5}}-{\frac {34\cdot 5}{75}})}{68{\sqrt {34}}}}-\left({\frac {34\cdot 0-45}{340}}{\sqrt {34\cdot 0^{2}-90\cdot 0+225}}-{\frac {1125\operatorname {arcsinh} ({\frac {3}{5}}-{\frac {34\cdot 0}{75}})}{68{\sqrt {34}}}}\right)=}
=
170
−
45
340
850
−
450
+
225
−
1125
arcsinh
(
3
5
−
170
75
)
68
34
−
(
−
45
340
225
−
1125
arcsinh
(
3
5
)
68
34
)
=
{\displaystyle ={\frac {170-45}{340}}{\sqrt {850-450+225}}-{\frac {1125\operatorname {arcsinh} ({\frac {3}{5}}-{\frac {170}{75}})}{68{\sqrt {34}}}}-\left({\frac {-45}{340}}{\sqrt {225}}-{\frac {1125\operatorname {arcsinh} ({\frac {3}{5}})}{68{\sqrt {34}}}}\right)=}
=
125
340
625
−
1125
arcsinh
(
3
⋅
75
−
170
⋅
5
5
⋅
75
)
68
34
−
(
−
9
68
⋅
15
−
1125
arcsinh
(
0.6
)
396.50472884948
)
=
{\displaystyle ={\frac {125}{340}}{\sqrt {625}}-{\frac {1125\operatorname {arcsinh} ({\frac {3\cdot 75-170\cdot 5}{5\cdot 75}})}{68{\sqrt {34}}}}-\left({\frac {-9}{68}}\cdot 15-{\frac {1125\operatorname {arcsinh} (0.6)}{396.50472884948}}\right)=}
=
25
68
⋅
25
−
1125
arcsinh
(
225
−
850
375
)
396.50472884948
−
(
−
135
68
−
1125
⋅
0.5688248987
396.50472884948
)
=
{\displaystyle ={\frac {25}{68}}\cdot 25-{\frac {1125\operatorname {arcsinh} ({\frac {225-850}{375}})}{396.50472884948}}-\left({\frac {-135}{68}}-{\frac {1125\cdot 0.5688248987}{396.50472884948}}\right)=}
=
625
68
−
1125
arcsinh
(
−
625
375
)
396.50472884948
−
(
−
135
68
−
639.928011
396.50472884948
)
=
{\displaystyle ={\frac {625}{68}}-{\frac {1125\operatorname {arcsinh} ({\frac {-625}{375}})}{396.50472884948}}-\left({\frac {-135}{68}}-{\frac {639.928011}{396.50472884948}}\right)=}
=
9.19117647
−
1125
arcsinh
(
−
5
3
)
396.50472884948
−
(
−
1.98529412
−
1.613922772
)
=
{\displaystyle =9.19117647-{\frac {1125\operatorname {arcsinh} (-{\frac {5}{3}})}{396.50472884948}}-(-1.98529412-1.613922772)=}
=
9.19117647
−
1125
⋅
(
−
1.283795663
)
396.50472884948
−
(
−
3.599216892
)
=
{\displaystyle =9.19117647-{\frac {1125\cdot (-1.283795663)}{396.50472884948}}-(-3.599216892)=}
=
9.19117647
+
3.642504151
+
3.599216892
=
16.43289751.
{\displaystyle =9.19117647+3.642504151+3.599216892=16.43289751.}
Pastebime, kad
2
A
/
10
=
2
⋅
16.43289751
/
10
=
3.286579503.
{\displaystyle 2A/10=2\cdot 16.43289751/10=3.286579503.}
Apskaičiuojame viską nepriekaištingai tiksliai su kompiuterio kalkuliatoriumi:
A
=
625
68
−
1125
arcsinh
(
−
5
/
3
)
68
34
−
(
−
135
68
−
1125
arcsinh
(
3
/
5
)
68
34
)
=
{\displaystyle A={\frac {625}{68}}-{\frac {1125\operatorname {arcsinh} (-5/3)}{68{\sqrt {34}}}}-\left({\frac {-135}{68}}-{\frac {1125\operatorname {arcsinh} (3/5)}{68{\sqrt {34}}}}\right)=}
=
12.833680621236990323769396193322
−
(
−
3.5992168895913637545005254840611
)
=
16.432897510828354078269921677383.
{\displaystyle =12.833680621236990323769396193322-(-3.5992168895913637545005254840611)=16.432897510828354078269921677383.}
Randame, kad
A
/
5
=
16.432897510828354078269921677383
/
5
=
3.2865795021656708156539843354766.
{\displaystyle A/5=16.432897510828354078269921677383/5=3.2865795021656708156539843354766.}
Toliau bandome rasti atlikta darbą apeita tiese
y
=
3
−
3
x
5
{\displaystyle y=3-{\frac {3x}{5}}}
integruojant
A
=
−
∮
L
x
d
x
+
y
d
y
.
{\displaystyle A=-\oint _{L}xdx+ydy.}
Randame
d
y
=
−
3
5
d
x
.
{\displaystyle dy=-{\frac {3}{5}}\;dx.}
Turime, kad x integravimo ribos yra 0 iki 5, o y integravimo ribos yra nuo 0 iki 3. Gauname:
A
=
−
∮
L
x
d
x
+
y
d
y
=
−
(
∫
0
5
x
d
x
−
3
5
(
3
−
3
x
5
)
d
x
)
=
−
∫
0
5
(
x
−
3
5
(
3
−
3
x
5
)
)
d
x
=
{\displaystyle A=-\oint _{L}xdx+ydy=-(\int _{0}^{5}x\;dx-{\frac {3}{5}}(3-{\frac {3x}{5}})dx)=-\int _{0}^{5}(x-{\frac {3}{5}}(3-{\frac {3x}{5}}))dx=}
=
−
∫
0
5
(
x
−
9
5
+
9
x
25
)
d
x
=
−
∫
0
5
(
−
9
5
+
25
x
+
9
x
25
)
d
x
=
−
∫
0
5
(
34
x
25
−
9
5
)
d
x
=
{\displaystyle =-\int _{0}^{5}(x-{\frac {9}{5}}+{\frac {9x}{25}})dx=-\int _{0}^{5}(-{\frac {9}{5}}+{\frac {25x+9x}{25}})dx=-\int _{0}^{5}({\frac {34x}{25}}-{\frac {9}{5}})dx=}
=
−
(
34
x
2
25
⋅
2
−
9
5
x
)
|
0
5
=
−
[
(
17
⋅
5
2
25
−
9
5
⋅
5
)
−
(
17
⋅
0
2
25
−
9
5
⋅
0
)
]
=
−
(
17
−
9
)
=
−
8.
{\displaystyle =-({\frac {34x^{2}}{25\cdot 2}}-{\frac {9}{5}}x)|_{0}^{5}=-[({\frac {17\cdot 5^{2}}{25}}-{\frac {9}{5}}\cdot 5)-({\frac {17\cdot 0^{2}}{25}}-{\frac {9}{5}}\cdot 0)]=-(17-9)=-8.}
Akivaizdu, kad atsakymas
A
=
−
8
{\displaystyle A=-8}
yra neteisingas, o atsakymas A=8 elipsei yra teisingas, nes elipsės lankas yra ilgesnis nei tiesės atkarpa pirmame ketvirtyje ir pagal sąlygą jėgos dydis proporcingas atstumui nuo centro, todėl elipsės lanko taškai yra toliau nuo centro nei tiesės
y
=
3
−
3
x
5
{\displaystyle y=3-{\frac {3x}{5}}}
atkarpos taškai. Ir todėl elipsės darbas A=8 yra didesnis už darbą A=3.2865795 tiesės atkarpa.
Pastebime, kad jeigu elipsė būtų apskritimas tai pirmame ketvirtyje atliktas darbas A=0. Taip yra todėl, kad kai x didėja, tada y reikšmės mažėja. Todėl skaičiuoti darbą, ko gero, galėtų būti teisingiau
A
=
∮
L
x
d
x
−
y
d
y
{\displaystyle A=\oint _{L}xdx-ydy}
arba
A
=
∮
L
−
x
d
x
+
y
d
y
.
{\displaystyle A=\oint _{L}-xdx+ydy.}
Tuomet akivaizdu, kad
A
=
a
2
+
b
2
2
=
5
2
+
3
2
2
=
17.
{\displaystyle A={\frac {a^{2}+b^{2}}{2}}={\frac {5^{2}+3^{2}}{2}}=17.}
Tą patį darba gauname ir apeinant tiese:
A
=
∮
L
x
d
x
−
y
d
y
=
∫
0
5
x
d
x
−
−
3
5
(
3
−
3
x
5
)
d
x
=
∫
0
5
(
x
+
3
5
(
3
−
3
x
5
)
)
d
x
=
{\displaystyle A=\oint _{L}xdx-ydy=\int _{0}^{5}x\;dx-{\frac {-3}{5}}(3-{\frac {3x}{5}})dx=\int _{0}^{5}(x+{\frac {3}{5}}(3-{\frac {3x}{5}}))dx=}
=
∫
0
5
(
x
+
9
5
−
9
x
25
)
d
x
=
∫
0
5
(
9
5
+
25
x
−
9
x
25
)
d
x
=
∫
0
5
(
16
x
25
+
9
5
)
d
x
=
{\displaystyle =\int _{0}^{5}(x+{\frac {9}{5}}-{\frac {9x}{25}})dx=\int _{0}^{5}({\frac {9}{5}}+{\frac {25x-9x}{25}})dx=\int _{0}^{5}({\frac {16x}{25}}+{\frac {9}{5}})dx=}
=
(
16
x
2
25
⋅
2
+
9
5
x
)
|
0
5
=
(
8
⋅
5
2
25
+
9
5
⋅
5
)
−
(
17
⋅
0
2
25
+
9
5
⋅
0
)
=
8
+
9
=
17.
{\displaystyle =({\frac {16x^{2}}{25\cdot 2}}+{\frac {9}{5}}x)|_{0}^{5}=({\frac {8\cdot 5^{2}}{25}}+{\frac {9}{5}}\cdot 5)-({\frac {17\cdot 0^{2}}{25}}+{\frac {9}{5}}\cdot 0)=8+9=17.}
Lygiai tą patį darbą gausime ir integruojant taip:
A
=
∮
L
x
d
x
−
y
d
y
=
∫
0
5
x
d
x
+
∫
0
3
y
d
y
=
x
2
2
|
0
5
+
y
2
2
|
0
3
=
25
2
+
9
2
=
17.
{\displaystyle A=\oint _{L}xdx-ydy=\int _{0}^{5}x\;dx+\int _{0}^{3}y\;dy={\frac {x^{2}}{2}}|_{0}^{5}+{\frac {y^{2}}{2}}|_{0}^{3}={\frac {25}{2}}+{\frac {9}{2}}=17.}
Tą patį gausime ir taip integruojant nuo 0 iki 5:
A
=
∫
F
d
F
=
∫
0
5
x
2
+
(
3
−
3
x
5
)
2
d
(
x
2
+
(
3
−
3
x
5
)
2
)
=
{\displaystyle A=\int F\;\mathbf {d} F=\int _{0}^{5}{\sqrt {x^{2}+(3-{\frac {3x}{5}})^{2}}}\;\mathbf {d} \left({\sqrt {x^{2}+(3-{\frac {3x}{5}})^{2}}}\right)=}
=
∫
0
5
x
2
+
(
3
−
3
x
5
)
2
0.5
(
x
2
+
(
3
−
3
x
/
5
)
2
)
−
0.5
(
2
x
+
2
(
3
−
3
x
/
5
)
(
−
0.6
)
)
d
x
=
{\displaystyle =\int _{0}^{5}{\sqrt {x^{2}+(3-{\frac {3x}{5}})^{2}}}0.5(x^{2}+(3-3x/5)^{2})^{-0.5}(2x+2(3-3x/5)(-0.6))\;dx=}
=
∫
0
5
x
2
+
(
3
−
3
x
5
)
2
(
x
2
+
(
3
−
3
x
/
5
)
2
)
−
0.5
(
x
−
0.6
(
3
−
3
x
/
5
)
d
x
=
{\displaystyle =\int _{0}^{5}{\sqrt {x^{2}+(3-{\frac {3x}{5}})^{2}}}(x^{2}+(3-3x/5)^{2})^{-0.5}(x-0.6(3-3x/5)\;dx=}
=
∫
0
5
x
2
+
(
3
−
3
x
5
)
2
(
x
−
1.8
+
0.36
x
)
x
2
+
(
3
−
3
x
/
5
)
2
d
x
=
{\displaystyle =\int _{0}^{5}{\frac {{\sqrt {x^{2}+(3-{\frac {3x}{5}})^{2}}}(x-1.8+0.36x)}{\sqrt {x^{2}+(3-3x/5)^{2}}}}\;dx=}
=
∫
0
5
(
1.36
x
−
1.8
)
d
x
=
(
1.36
x
2
2
−
1.8
x
)
|
0
5
=
{\displaystyle =\int _{0}^{5}(1.36x-1.8)\;dx=(1.36{\frac {x^{2}}{2}}-1.8x)|_{0}^{5}=}
=
[
(
0.68
x
−
1.8
)
x
]
|
0
5
=
(
0.68
⋅
5
−
1.8
)
⋅
5
=
(
3.4
−
1.8
)
⋅
5
=
1.6
⋅
5
=
8.
{\displaystyle =[(0.68x-1.8)x]|_{0}^{5}=(0.68\cdot 5-1.8)\cdot 5=(3.4-1.8)\cdot 5=1.6\cdot 5=8.}
Nustatyti tiesės
y
=
3
−
3
x
5
{\displaystyle y=3-{\frac {3x}{5}}}
masę tik pirmame ketvirtyje. Tiesės tankis
γ
{\displaystyle \gamma }
tolstant tiesės taškams nuo centro (koordinačių pradžios taško O ) didėja proporcingai, t. y.
γ
=
x
2
+
y
2
.
{\displaystyle \gamma ={\sqrt {x^{2}+y^{2}}}.}
Sprendimas . Pasinaudosime masės skaičiavimo formule
m
=
∫
L
γ
1
+
[
y
′
]
2
d
x
=
∫
0
5
x
2
+
y
2
1
+
[
y
′
]
2
d
x
=
{\displaystyle m=\int _{L}\gamma {\sqrt {1+[y']^{2}}}\;dx=\int _{0}^{5}{\sqrt {x^{2}+y^{2}}}{\sqrt {1+[y']^{2}}}\;dx=}
=
∫
0
5
x
2
+
(
3
−
3
x
5
)
2
1
+
(
−
3
5
)
2
d
x
=
{\displaystyle =\int _{0}^{5}{\sqrt {x^{2}+\left(3-{\frac {3x}{5}}\right)^{2}}}{\sqrt {1+\left(-{\frac {3}{5}}\right)^{2}}}\;dx=}
=
∫
0
5
x
2
+
9
−
18
x
5
+
9
x
2
25
1
+
9
25
d
x
=
{\displaystyle =\int _{0}^{5}{\sqrt {x^{2}+9-{\frac {18x}{5}}+{\frac {9x^{2}}{25}}}}{\sqrt {1+{\frac {9}{25}}}}\;dx=}
=
∫
0
5
9
−
18
x
5
+
34
x
2
25
34
25
d
x
.
{\displaystyle =\int _{0}^{5}{\sqrt {9-{\frac {18x}{5}}+{\frac {34x^{2}}{25}}}}{\sqrt {\frac {34}{25}}}\;dx.}
Toliau integruodami gauname:
m
=
34
25
(
34
x
2
−
90
x
+
225
(
x
2
2
−
45
68
)
+
5625
arcsinh
34
x
−
45
75
68
34
)
|
0
5
=
{\displaystyle m={\frac {\sqrt {34}}{25}}\left({\sqrt {34x^{2}-90x+225}}\left({\frac {x^{2}}{2}}-{\frac {45}{68}}\right)+{\frac {5625\operatorname {arcsinh} {\frac {34x-45}{75}}}{68{\sqrt {34}}}}\right)|_{0}^{5}=}
=
34
25
(
34
⋅
25
−
90
⋅
5
+
225
(
25
2
−
45
68
)
+
5625
arcsinh
34
⋅
5
−
45
75
68
34
)
−
34
25
(
34
⋅
0
−
90
⋅
0
+
225
(
0
2
2
−
45
68
)
+
5625
arcsinh
34
⋅
0
−
45
75
68
34
)
=
{\displaystyle ={\frac {\sqrt {34}}{25}}\left({\sqrt {34\cdot 25-90\cdot 5+225}}\left({\frac {25}{2}}-{\frac {45}{68}}\right)+{\frac {5625\operatorname {arcsinh} {\frac {34\cdot 5-45}{75}}}{68{\sqrt {34}}}}\right)-{\frac {\sqrt {34}}{25}}\left({\sqrt {34\cdot 0-90\cdot 0+225}}\left({\frac {0^{2}}{2}}-{\frac {45}{68}}\right)+{\frac {5625\operatorname {arcsinh} {\frac {34\cdot 0-45}{75}}}{68{\sqrt {34}}}}\right)=}
=
34
25
(
850
−
450
+
225
25
⋅
68
−
90
2
⋅
68
+
5625
arcsinh
170
−
45
75
68
34
)
−
34
25
(
225
(
−
45
68
)
+
5625
arcsinh
−
45
75
68
34
)
=
{\displaystyle ={\frac {\sqrt {34}}{25}}\left({\sqrt {850-450+225}}{\frac {25\cdot 68-90}{2\cdot 68}}+{\frac {5625\operatorname {arcsinh} {\frac {170-45}{75}}}{68{\sqrt {34}}}}\right)-{\frac {\sqrt {34}}{25}}\left({\sqrt {225}}\left(-{\frac {45}{68}}\right)+{\frac {5625\operatorname {arcsinh} {\frac {-45}{75}}}{68{\sqrt {34}}}}\right)=}
=
34
25
(
295.95588235294
+
18.21252075
)
−
34
25
(
−
9.926470588
−
8.0696138597
)
=
{\displaystyle ={\frac {\sqrt {34}}{25}}(295.95588235294+18.21252075)-{\frac {\sqrt {34}}{25}}(-9.926470588-8.0696138597)=}
=
34
25
⋅
314.1684031
−
34
25
(
−
17.99608445
)
=
332.1644875
34
25
=
77.47340592.
{\displaystyle ={\frac {\sqrt {34}}{25}}\cdot 314.1684031-{\frac {\sqrt {34}}{25}}(-17.99608445)={\frac {332.1644875{\sqrt {34}}}{25}}=77.47340592.}
Wolframo integratoriui varžteliai atsisuko, nes integruojant tą patį taip ir taip nuo 0 iki 5 gauname skirtingus atsakymus atitinkamai:
16.43289751
{\displaystyle 16.43289751}
ir
77.47340592
34
25
=
66.4328975.
{\displaystyle {\frac {77.47340592}{\sqrt {\frac {34}{25}}}}=66.4328975.}
Beje, integruojant taip nuo 0 iki 5 gauname:
[34^0.5]*[(45,955882352941176470588235294118+18,21252075324377514825874567249)-(-9,9264705882352941176470588235294-8,0696138597215246548555685967763)]/25=
=[34^0.5]*[64,168403106184951618846980966608-(-17,996084447956818772502627420306)]/25=
=[34^0.5]*82,164487554141770391349608386914/25=19,163886975712642545064105297031.
Wolframo integratorius duoda keistus sutapimus:
m
=
∫
0
5
γ
d
x
∫
0
5
1
+
[
y
′
]
2
d
x
=
19.1638869757
34
=
3.286579502.
{\displaystyle m={\frac {\int _{0}^{5}\gamma dx}{\int _{0}^{5}{\sqrt {1+[y']^{2}}}dx}}={\frac {19.1638869757}{\sqrt {34}}}=3.286579502.}
Nors formulė (
∫
0
5
γ
1
+
[
y
′
]
2
d
x
∫
0
5
1
+
[
y
′
]
2
d
x
{\displaystyle {\frac {\int _{0}^{5}\gamma {\sqrt {1+[y']^{2}}}dx}{\int _{0}^{5}{\sqrt {1+[y']^{2}}}dx}}}
) ir skirta kreivės svorio centro koordinatės nustatymui (
x
C
{\displaystyle x_{C}}
), bet sprendžiant iš kai kurių matematikos vadovelių, kreivės masę galima apskaičiuoti, bet tada, matyt, reikia pačiam sugalvoti formulę, pagal kurią skaičiuoti (nebent ten turima galvoje, kad kreivės ilgis lygus masei, o tankis toks pat visuose kreivės taškuose).
Tačiau, ko gero,
x
C
=
m
=
∫
0
5
γ
1
+
[
y
′
]
2
d
x
∫
0
5
1
+
[
y
′
]
2
d
x
=
16.43289751
34
25
34
=
19.16388697
34
=
16.43289751
5
=
3.286579502.
{\displaystyle x_{C}=m={\frac {\int _{0}^{5}\gamma {\sqrt {1+[y']^{2}}}dx}{\int _{0}^{5}{\sqrt {1+[y']^{2}}}dx}}={\frac {16.43289751{\sqrt {\frac {34}{25}}}}{\sqrt {34}}}={\frac {19.16388697}{\sqrt {34}}}={\frac {16.43289751}{5}}=3.286579502.}
Kad išsiaiškinti teisybę pasinaudosime integralų lentele :
∫
a
x
2
+
b
x
+
c
d
x
=
b
+
2
a
x
4
a
a
x
2
+
b
x
+
c
+
4
a
c
−
b
2
8
a
3
/
2
ln
|
2
a
x
+
b
+
2
a
(
a
x
2
+
b
x
+
c
)
|
.
{\displaystyle \int {\sqrt {ax^{2}+bx+c}}\;dx={\frac {b+2ax}{4a}}{\sqrt {ax^{2}+bx+c}}+{\frac {4ac-b^{2}}{8a^{3/2}}}\ln |2ax+b+2{\sqrt {a(ax^{2}+bx+c)}}|.}
Tada integruojame:
∫
L
γ
1
+
[
y
′
]
2
d
x
=
∫
0
5
x
2
+
y
2
1
+
[
y
′
]
2
d
x
=
{\displaystyle \int _{L}\gamma {\sqrt {1+[y']^{2}}}\;dx=\int _{0}^{5}{\sqrt {x^{2}+y^{2}}}{\sqrt {1+[y']^{2}}}\;dx=}
=
∫
0
5
x
2
+
(
3
−
3
x
5
)
2
1
+
(
−
3
5
)
2
d
x
=
{\displaystyle =\int _{0}^{5}{\sqrt {x^{2}+\left(3-{\frac {3x}{5}}\right)^{2}}}{\sqrt {1+\left(-{\frac {3}{5}}\right)^{2}}}\;dx=}
=
∫
0
5
x
2
+
9
−
18
x
5
+
9
x
2
25
1
+
9
25
d
x
=
{\displaystyle =\int _{0}^{5}{\sqrt {x^{2}+9-{\frac {18x}{5}}+{\frac {9x^{2}}{25}}}}{\sqrt {1+{\frac {9}{25}}}}\;dx=}
=
∫
0
5
9
−
18
x
5
+
34
x
2
25
34
25
d
x
=
{\displaystyle =\int _{0}^{5}{\sqrt {9-{\frac {18x}{5}}+{\frac {34x^{2}}{25}}}}{\sqrt {\frac {34}{25}}}\;dx=}
=
34
5
∫
0
5
34
25
x
2
−
18
5
x
+
9
d
x
=
{\displaystyle ={\frac {\sqrt {34}}{5}}\int _{0}^{5}{\sqrt {{\frac {34}{25}}x^{2}-{\frac {18}{5}}x+9}}\;dx=}
=
34
5
∫
0
5
1.36
x
2
−
3.6
x
+
9
d
x
=
{\displaystyle ={\frac {\sqrt {34}}{5}}\int _{0}^{5}{\sqrt {1.36x^{2}-3.6x+9}}\;dx=}
=
34
5
(
−
3.6
+
2
⋅
1.36
x
4
⋅
1.36
1.36
x
2
−
3.6
x
+
9
+
4
⋅
1.36
⋅
9
−
(
−
3.6
)
2
8
⋅
1.36
3
/
2
ln
|
2
⋅
1.36
x
−
3.6
+
2
1.36
(
1.36
x
2
−
3.6
x
+
9
)
|
)
|
0
5
=
{\displaystyle ={\frac {\sqrt {34}}{5}}\left({\frac {-3.6+2\cdot 1.36x}{4\cdot 1.36}}{\sqrt {1.36x^{2}-3.6x+9}}+{\frac {4\cdot 1.36\cdot 9-(-3.6)^{2}}{8\cdot 1.36^{3/2}}}\ln |2\cdot 1.36x-3.6+2{\sqrt {1.36(1.36x^{2}-3.6x+9)}}|\right)|_{0}^{5}=}
=
34
5
(
−
3.6
+
2.72
x
5.44
1.36
x
2
−
3.6
x
+
9
+
48.96
−
12.96
8
⋅
2.515456
1
/
2
ln
|
2.72
x
−
3.6
+
2
1.36
(
1.36
x
2
−
3.6
x
+
9
)
|
)
|
0
5
=
{\displaystyle ={\frac {\sqrt {34}}{5}}\left({\frac {-3.6+2.72x}{5.44}}{\sqrt {1.36x^{2}-3.6x+9}}+{\frac {48.96-12.96}{8\cdot 2.515456^{1/2}}}\ln |2.72x-3.6+2{\sqrt {1.36(1.36x^{2}-3.6x+9)}}|\right)|_{0}^{5}=}
=
34
5
(
−
3.6
+
2.72
x
5.44
1.36
x
2
−
3.6
x
+
9
+
36
12.68815132
ln
|
2.72
x
−
3.6
+
2
1.36
(
1.36
x
2
−
3.6
x
+
9
)
|
)
|
0
5
=
{\displaystyle ={\frac {\sqrt {34}}{5}}\left({\frac {-3.6+2.72x}{5.44}}{\sqrt {1.36x^{2}-3.6x+9}}+{\frac {36}{12.68815132}}\ln |2.72x-3.6+2{\sqrt {1.36(1.36x^{2}-3.6x+9)}}|\right)|_{0}^{5}=}
=
34
5
(
−
3.6
+
2.72
⋅
5
5.44
1.36
⋅
25
−
3.6
⋅
5
+
9
+
2.8372927689
ln
|
2.72
⋅
5
−
3.6
+
2
1.36
(
1.36
⋅
25
−
3.6
⋅
5
+
9
)
|
)
−
{\displaystyle ={\frac {\sqrt {34}}{5}}\left({\frac {-3.6+2.72\cdot 5}{5.44}}{\sqrt {1.36\cdot 25-3.6\cdot 5+9}}+2.8372927689\ln |2.72\cdot 5-3.6+2{\sqrt {1.36(1.36\cdot 25-3.6\cdot 5+9)}}|\right)-}
−
34
5
(
−
3.6
+
2.72
⋅
0
5.44
1.36
⋅
0
2
−
3.6
⋅
0
+
9
+
2.8372927689
ln
|
2.72
⋅
0
−
3.6
+
2
1.36
(
1.36
⋅
0
2
−
3.6
⋅
0
+
9
)
|
)
=
{\displaystyle -{\frac {\sqrt {34}}{5}}\left({\frac {-3.6+2.72\cdot 0}{5.44}}{\sqrt {1.36\cdot 0^{2}-3.6\cdot 0+9}}+2.8372927689\ln |2.72\cdot 0-3.6+2{\sqrt {1.36(1.36\cdot 0^{2}-3.6\cdot 0+9)}}|\right)=}
=
34
5
(
10
5.44
34
−
18
+
9
+
2.8372927689
ln
|
13.6
−
3.6
+
2
1.36
(
34
−
18
+
9
)
|
)
−
{\displaystyle ={\frac {\sqrt {34}}{5}}\left({\frac {10}{5.44}}{\sqrt {34-18+9}}+2.8372927689\ln |13.6-3.6+2{\sqrt {1.36(34-18+9)}}|\right)-}
−
34
5
(
−
3.6
5.44
9
+
2.8372927689
ln
|
−
3.6
+
2
1.36
⋅
9
|
)
=
{\displaystyle -{\frac {\sqrt {34}}{5}}\left({\frac {-3.6}{5.44}}{\sqrt {9}}+2.8372927689\ln |-3.6+2{\sqrt {1.36\cdot 9}}|\right)=}
=
34
5
(
10
5.44
25
+
2.8372927689
ln
|
10
+
2
1.36
⋅
25
|
)
−
34
5
(
−
3.6
5.44
⋅
3
+
2.8372927689
ln
|
−
3.6
+
2
12.24
|
)
=
{\displaystyle ={\frac {\sqrt {34}}{5}}\left({\frac {10}{5.44}}{\sqrt {25}}+2.8372927689\ln |10+2{\sqrt {1.36\cdot 25}}|\right)-{\frac {\sqrt {34}}{5}}\left({\frac {-3.6}{5.44}}\cdot 3+2.8372927689\ln |-3.6+2{\sqrt {12.24}}|\right)=}
=
34
5
(
50
5.44
+
2.8372927689
ln
|
10
+
2
34
|
)
−
34
5
(
−
10.8
5.44
+
2.8372927689
ln
|
−
3.6
+
2
12.24
|
)
=
{\displaystyle ={\frac {\sqrt {34}}{5}}\left({\frac {50}{5.44}}+2.8372927689\ln |10+2{\sqrt {34}}|\right)-{\frac {\sqrt {34}}{5}}\left({\frac {-10.8}{5.44}}+2.8372927689\ln |-3.6+2{\sqrt {12.24}}|\right)=}
=
34
5
(
9.191176471
+
2.8372927689
ln
|
21.66190379
|
)
−
34
5
(
−
10.8
5.44
+
2.8372927689
ln
|
−
3.6
+
2
12.24
|
)
=
{\displaystyle ={\frac {\sqrt {34}}{5}}\left(9.191176471+2.8372927689\ln |21.66190379|\right)-{\frac {\sqrt {34}}{5}}\left({\frac {-10.8}{5.44}}+2.8372927689\ln |-3.6+2{\sqrt {12.24}}|\right)=}
=
34
5
(
9.191176471
+
8.726250336
)
−
34
5
(
−
1.985294118
+
3.469823414
)
=
{\displaystyle ={\frac {\sqrt {34}}{5}}(9.191176471+8.726250336)-{\frac {\sqrt {34}}{5}}(-1.985294118+3.469823414)=}
=
34
5
⋅
17.91742681
−
34
5
⋅
1.484529296
=
16.43289751
34
5
=
19.16388698.
{\displaystyle ={\frac {\sqrt {34}}{5}}\cdot 17.91742681-{\frac {\sqrt {34}}{5}}\cdot 1.484529296={\frac {16.43289751{\sqrt {34}}}{5}}=19.16388698.}
Vadinasi, randame tiesės masę kaip prašyta sąlygoje:
m
=
∫
0
5
γ
1
+
[
y
′
]
2
d
x
∫
0
5
1
+
[
y
′
]
2
d
x
=
19.16388698
∫
0
5
1
+
(
−
3
5
)
2
d
x
=
19.16388698
∫
0
5
1
+
9
25
d
x
=
19.16388698
∫
0
5
34
25
d
x
=
{\displaystyle m={\frac {\int _{0}^{5}\gamma {\sqrt {1+[y']^{2}}}dx}{\int _{0}^{5}{\sqrt {1+[y']^{2}}}dx}}={\frac {19.16388698}{\int _{0}^{5}{\sqrt {1+\left(-{\frac {3}{5}}\right)^{2}}}dx}}={\frac {19.16388698}{\int _{0}^{5}{\sqrt {1+{\frac {9}{25}}}}dx}}={\frac {19.16388698}{\int _{0}^{5}{\sqrt {\frac {34}{25}}}dx}}=}
=
19.16388698
34
5
x
|
0
5
=
19.16388698
34
5
⋅
5
−
34
5
⋅
0
=
19.16388698
34
=
3.286579502.
{\displaystyle ={\frac {19.16388698}{{\frac {\sqrt {34}}{5}}x|_{0}^{5}}}={\frac {19.16388698}{{\frac {\sqrt {34}}{5}}\cdot 5-{\frac {\sqrt {34}}{5}}\cdot 0}}={\frac {19.16388698}{\sqrt {34}}}=3.286579502.}
Nustatyti parabolės
y
=
x
2
{\displaystyle y=x^{2}}
masę pirmame ketvirtyje, kai x kinta nuo 0 iki 10. Tiesės tankis
γ
{\displaystyle \gamma }
tolstant tiesės taškams nuo centro (koordinačių pradžios taško O ) didėja proporcingai, t. y.
γ
=
x
2
+
y
2
.
{\displaystyle \gamma ={\sqrt {x^{2}+y^{2}}}.}
Sprendimas . Iš pradžių apskaičiuosime be integralų apytiksliai:
m
=
1
10
∑
1
10
(
10
n
/
10
)
2
+
(
(
10
n
/
10
)
2
)
2
=
1
10
∑
1
10
n
2
+
n
4
=
{\displaystyle m={\frac {1}{10}}\sum _{1}^{10}{\sqrt {(10n/10)^{2}+((10n/10)^{2})^{2}}}={\frac {1}{10}}\sum _{1}^{10}{\sqrt {n^{2}+n^{4}}}=}
=
1
10
(
2
+
20
+
90
+
272
+
650
+
1332
+
2450
+
4160
+
6642
+
10100
)
=
{\displaystyle ={\frac {1}{10}}({\sqrt {2}}+{\sqrt {20}}+{\sqrt {90}}+{\sqrt {272}}+{\sqrt {650}}+{\sqrt {1332}}+{\sqrt {2450}}+{\sqrt {4160}}+{\sqrt {6642}}+{\sqrt {10100}})=}
=389,85003687399407318939051595541/10=38,985003687399407318939051595541.
Integruojame (pasinaudodami integralų lentelės (31) formule ):
p
=
∫
0
10
(
x
)
2
+
(
x
2
)
2
d
x
=
∫
0
10
x
2
+
x
4
d
x
=
∫
0
10
x
1
+
x
2
d
x
=
{\displaystyle p=\int _{0}^{10}{\sqrt {(x)^{2}+(x^{2})^{2}}}dx=\int _{0}^{10}{\sqrt {x^{2}+x^{4}}}dx=\int _{0}^{10}x{\sqrt {1+x^{2}}}dx=}
=
1
3
(
x
2
+
1
)
3
/
2
|
0
10
=
1
3
(
10
2
+
1
)
3
/
2
−
1
3
(
0
2
+
1
)
3
/
2
=
{\displaystyle ={\frac {1}{3}}(x^{2}+1)^{3/2}|_{0}^{10}={\frac {1}{3}}(10^{2}+1)^{3/2}-{\frac {1}{3}}(0^{2}+1)^{3/2}=}
=
1
3
(
101
)
3
/
2
−
1
3
=
1
3
1030301
−
1
3
=
{\displaystyle ={\frac {1}{3}}(101)^{3/2}-{\frac {1}{3}}={\frac {1}{3}}{\sqrt {1030301}}-{\frac {1}{3}}=}
=338,01247924440330576404858539624.
Pastebime, kad masė galėtų būti
m
=
p
/
10
=
33.801247924440330576404858539624.
{\displaystyle m=p/10=33.801247924440330576404858539624.}
Kad tuo įsitikinti pasinaudojame "Free Pascal" (Version 1.0.12 2011/04/23; Compiler Version 2.4.4; Debugger GDB 7.2) programavimo kalba:
var
a:longint;
c:real;
begin
for a:=1 to 100 do
c:=c+sqrt(sqr(10*a/100)+sqr(sqr(10*a/100)))/100;
writeln(c);
readln;
end.
ir gauname atsakymą 34.3053251011728.
Panaudojus šį kodą:
var
a:longint;
c:real;
begin
for a:=1 to 10000 do
c:=c+sqrt(sqr(10*a/10000)+sqr(sqr(10*a/10000)))/10000;
writeln(c);
readln;
end.
gauname atsakymą 33.8062730205864.
Dar tikslesnį atsakymą
33.8012479746790
{\displaystyle 33.8012479746790}
duoda šitas kodas:
var
a:longint;
c:real;
begin
for a:=1 to 1000000000 do
c:=c+sqrt(sqr(10.0*a/1000000000)+sqr(sqr(10.0*a/1000000000)))/1000000000;
writeln(c);
readln;
end.
po 38 sekundžių su 2,6 GHz procesoriumi.
Optimizuotas kodas:
var
a:longint;
b,c:real;
begin
for a:=1 to 1000000000 do
c:=c+sqrt(sqr(0.00000001*a)+sqr(sqr(0.00000001*a)));
b:=0.000000001*c;
writeln(b);
readln;
end.
duoda atsakymą 33,8012479746835 po 18 sekundžių su 2,6 GHz procesoriumi.
Toliau, kad surasti kreivės masės skaičiavimo formulę (kai kiekviename kreivės taške tankis priklauso nuo tam tikros funkcijos). Todėl skaičiuojame:
m
=
∫
0
10
γ
1
+
[
y
′
]
2
d
x
∫
0
10
1
+
[
y
′
]
2
d
x
=
∫
0
10
x
2
+
y
2
1
+
[
(
x
2
)
′
]
2
d
x
∫
0
10
1
+
[
(
x
2
)
′
]
2
d
x
=
∫
0
10
x
2
+
(
x
2
)
2
1
+
[
2
x
]
2
d
x
∫
0
10
1
+
[
2
x
]
2
d
x
=
{\displaystyle m={\frac {\int _{0}^{10}\gamma {\sqrt {1+[y']^{2}}}dx}{\int _{0}^{10}{\sqrt {1+[y']^{2}}}dx}}={\frac {\int _{0}^{10}{\sqrt {x^{2}+y^{2}}}{\sqrt {1+[(x^{2})']^{2}}}dx}{\int _{0}^{10}{\sqrt {1+[(x^{2})']^{2}}}dx}}={\frac {\int _{0}^{10}{\sqrt {x^{2}+(x^{2})^{2}}}{\sqrt {1+[2x]^{2}}}dx}{\int _{0}^{10}{\sqrt {1+[2x]^{2}}}dx}}=}
=
∫
0
10
x
2
+
x
4
1
+
4
x
2
d
x
∫
0
10
1
+
4
x
2
d
x
=
∫
0
10
x
1
+
x
2
1
+
4
x
2
d
x
∫
0
10
1
+
4
x
2
d
x
=
∫
0
10
x
4
x
4
+
5
x
2
+
1
d
x
∫
0
10
2
1
2
+
x
2
d
x
.
{\displaystyle ={\frac {\int _{0}^{10}{\sqrt {x^{2}+x^{4}}}{\sqrt {1+4x^{2}}}dx}{\int _{0}^{10}{\sqrt {1+4x^{2}}}dx}}={\frac {\int _{0}^{10}x{\sqrt {1+x^{2}}}{\sqrt {1+4x^{2}}}dx}{\int _{0}^{10}{\sqrt {1+4x^{2}}}dx}}={\frac {\int _{0}^{10}x{\sqrt {4x^{4}+5x^{2}+1}}dx}{\int _{0}^{10}2{\sqrt {{\frac {1}{2}}+x^{2}}}dx}}.}
Toliau integruodami taip arba taip ir įstačius x=1 gauname 1,0565457675431157081260089778614 ir 0,95907194527687339898921071078133 atitinkamai. Kita vertus, integruojant taip ir taip gauname tą patį rezultatą
1
12
x
2
(
8
x
4
+
15
x
2
+
6
)
.
{\displaystyle {\frac {1}{12}}x^{2}(8x^{4}+15x^{2}+6).}
Todėl šį rezultatą ir panaudojame toliau integruodami (o vardiklyje esantį integralą gauname iš integralų lentelės
∫
x
2
±
a
2
d
x
=
1
2
x
x
2
±
a
2
±
1
2
a
2
ln
|
x
+
x
2
±
a
2
|
{\displaystyle \int {\sqrt {x^{2}\pm a^{2}}}dx={\frac {1}{2}}x{\sqrt {x^{2}\pm a^{2}}}\pm {\frac {1}{2}}a^{2}\ln |x+{\sqrt {x^{2}\pm a^{2}}}|}
):
∫
0
10
x
4
x
4
+
5
x
2
+
1
d
x
2
∫
0
10
1
4
+
x
2
d
x
=
1
12
x
2
(
8
x
4
+
15
x
2
+
6
)
|
0
10
2
(
1
2
x
x
2
+
1
4
+
1
2
⋅
1
4
ln
|
x
+
x
2
+
1
4
|
)
|
0
10
=
{\displaystyle {\frac {\int _{0}^{10}x{\sqrt {4x^{4}+5x^{2}+1}}dx}{2\int _{0}^{10}{\sqrt {{\frac {1}{4}}+x^{2}}}dx}}={\frac {{\frac {1}{12}}x^{2}(8x^{4}+15x^{2}+6)|_{0}^{10}}{2({\frac {1}{2}}x{\sqrt {x^{2}+{\frac {1}{4}}}}+{\frac {1}{2}}\cdot {\frac {1}{4}}\ln |x+{\sqrt {x^{2}+{\frac {1}{4}}}}|)|_{0}^{10}}}=}
=
1
12
⋅
10
2
(
8
⋅
10
4
+
15
⋅
10
2
+
6
)
−
0
10
10
2
+
1
4
+
1
4
ln
|
10
+
10
2
+
1
4
|
−
(
0
⋅
0
2
+
1
4
+
1
4
ln
|
0
+
0
2
+
1
4
|
)
=
{\displaystyle ={\frac {{\frac {1}{12}}\cdot 10^{2}(8\cdot 10^{4}+15\cdot 10^{2}+6)-0}{10{\sqrt {10^{2}+{\frac {1}{4}}}}+{\frac {1}{4}}\ln |10+{\sqrt {10^{2}+{\frac {1}{4}}}}|-(0\cdot {\sqrt {0^{2}+{\frac {1}{4}}}}+{\frac {1}{4}}\ln |0+{\sqrt {0^{2}+{\frac {1}{4}}}}|)}}=}
=
1
12
⋅
100
(
80000
+
1500
+
6
)
10
100.25
+
1
4
ln
|
10
+
100.25
|
−
(
1
4
ln
|
1
2
|
)
=
{\displaystyle ={\frac {{\frac {1}{12}}\cdot 100(80000+1500+6)}{10{\sqrt {100.25}}+{\frac {1}{4}}\ln |10+{\sqrt {100.25}}|-({\frac {1}{4}}\ln |{\frac {1}{2}}|)}}=}
=
1
12
⋅
100
⋅
81506
100.12492197
+
0.7490891721
−
(
−
0.173286795
)
=
{\displaystyle ={\frac {{\frac {1}{12}}\cdot 100\cdot 81506}{100.12492197+0.7490891721-(-0.173286795)}}=}
=
679216.6667
101.0472979
=
6721.76971.
{\displaystyle ={\frac {679216.6667}{101.0472979}}=6721.76971.}
Nepriekaištingai tikslus atsakymas yra:
679216,66666666666666666666666667/(100,12492197250392863848606074161+0,74908917210724008285110536237573+0,17328679513998632735430803036454)=
=679216,66666666666666666666666667/101,04729793975115504869147413435=6721,7697109688724955439401205637.
Todėl belieka patikrinti ar Wolframo internetinio integratoriaus atsakymas teisingas paėmus išvėstinę ir paskui įstačius x=1 bei palyginti su neišintegruotu reiškiniu:
(
1
12
x
2
(
8
x
4
+
15
x
2
+
6
)
)
′
=
(
1
12
(
8
x
6
+
15
x
4
+
6
x
2
)
)
′
=
1
12
(
48
x
5
+
60
x
3
+
12
x
)
=
4
x
5
+
5
x
3
+
x
=
4
+
5
+
1
=
10
;
{\displaystyle ({\frac {1}{12}}x^{2}(8x^{4}+15x^{2}+6))'=({\frac {1}{12}}(8x^{6}+15x^{4}+6x^{2}))'={\frac {1}{12}}(48x^{5}+60x^{3}+12x)=4x^{5}+5x^{3}+x=4+5+1=10;}
x
4
x
4
+
5
x
2
+
1
=
4
x
6
+
5
x
4
+
1
=
4
+
5
+
1
=
10
.
{\displaystyle x{\sqrt {4x^{4}+5x^{2}+1}}={\sqrt {4x^{6}+5x^{4}+1}}={\sqrt {4+5+1}}={\sqrt {10}}.}
Pasirodo, kad nepridėta šaknis įvedimo formoje į integratorių, bet integruojant taip ir taip gauname tokį patį rezultatą, kuris yra labai sudetingas ir ilgas. Net didžiausioje integralų lentelėje nėra kaip išintegruoti
∫
x
1
+
x
2
1
+
4
x
2
d
x
.
{\displaystyle \int x{\sqrt {1+x^{2}}}{\sqrt {1+4x^{2}}}dx.}
Yra tik
∫
a
+
b
x
c
+
p
x
d
x
,
{\displaystyle \int {\sqrt {a+bx}}{\sqrt {c+px}}dx,}
bet ir tai integravimas gaunasi su dar dviais pažiūrėjimais į integralų lentelę.
Kai x kinta 0 iki 5, tai integruojant gauname
p
=
∫
0
5
(
x
)
2
+
(
x
2
)
2
d
x
=
∫
0
5
x
2
+
x
4
d
x
=
∫
0
10
x
1
+
x
2
d
x
=
{\displaystyle p=\int _{0}^{5}{\sqrt {(x)^{2}+(x^{2})^{2}}}dx=\int _{0}^{5}{\sqrt {x^{2}+x^{4}}}dx=\int _{0}^{10}x{\sqrt {1+x^{2}}}dx=}
=
1
3
(
x
2
+
1
)
3
/
2
|
0
5
=
1
3
(
5
2
+
1
)
3
/
2
−
1
3
(
0
2
+
1
)
3
/
2
=
{\displaystyle ={\frac {1}{3}}(x^{2}+1)^{3/2}|_{0}^{5}={\frac {1}{3}}(5^{2}+1)^{3/2}-{\frac {1}{3}}(0^{2}+1)^{3/2}=}
=
1
3
(
26
)
3
/
2
−
1
3
=
17576
−
1
3
=
{\displaystyle ={\frac {1}{3}}(26)^{3/2}-{\frac {1}{3}}={\frac {{\sqrt {17576}}-1}{3}}=}
=43,858169117804135193577942278197.
Randame, m=p/5=43,858169117804135193577942278197/5=8,7716338235608270387155884556395. Tą patį atsakymą (8,77163383630657) gauname ir pasinaudodami Free Pascal kodu:
var
a:longint;
c:real;
begin
for a:=1 to 1000000000 do
c:=c+sqrt(sqr(5.0*a/1000000000)+sqr(sqr(5.0*a/1000000000)))/1000000000;
writeln(c);
readln;
end.
Nustatyti parabolės
y
=
x
2
{\displaystyle y=x^{2}}
masę pirmame ketvirtyje, kai x kinta nuo 0 iki 10. Tiesės tankis
γ
{\displaystyle \gamma }
tolstant tiesės taškams nuo centro (koordinačių pradžios taško O ) didėja proporcingai tik Ox kryptimi, t. y.
γ
=
x
.
{\displaystyle \gamma =x.}
Sprendimas . Greičiausias būdas apskaičiuoti, tai ko reikalauja sąlyga (uždavinys) yra toks:
m
=
∫
0
10
x
d
x
=
x
2
2
|
0
10
=
10
2
2
−
0
2
2
=
50.
{\displaystyle m=\int _{0}^{10}x\;dx={\frac {x^{2}}{2}}|_{0}^{10}={\frac {10^{2}}{2}}-{\frac {0^{2}}{2}}=50.}
Kitas būdas yra toks:
m
=
∫
0
10
γ
1
+
[
y
′
]
2
d
x
∫
0
10
1
+
[
y
′
]
2
d
x
=
∫
0
10
x
1
+
(
2
x
)
2
d
x
∫
0
10
1
+
(
2
x
)
2
d
x
=
∫
0
10
x
1
+
4
x
2
d
x
∫
0
10
1
+
4
x
2
d
x
=
{\displaystyle m={\frac {\int _{0}^{10}\gamma {\sqrt {1+[y']^{2}}}dx}{\int _{0}^{10}{\sqrt {1+[y']^{2}}}dx}}={\frac {\int _{0}^{10}x{\sqrt {1+(2x)^{2}}}dx}{\int _{0}^{10}{\sqrt {1+(2x)^{2}}}dx}}={\frac {\int _{0}^{10}x{\sqrt {1+4x^{2}}}dx}{\int _{0}^{10}{\sqrt {1+4x^{2}}}dx}}=}
=
∫
0
10
2
x
1
4
+
x
2
d
x
2
∫
0
10
1
4
+
x
2
d
x
=
2
3
(
x
2
+
1
4
)
3
/
2
|
0
10
2
(
1
2
x
x
2
+
1
4
+
1
2
⋅
1
4
ln
|
x
+
x
2
+
1
4
|
)
|
0
10
=
{\displaystyle ={\frac {\int _{0}^{10}2x{\sqrt {{\frac {1}{4}}+x^{2}}}dx}{2\int _{0}^{10}{\sqrt {{\frac {1}{4}}+x^{2}}}dx}}={\frac {{\frac {2}{3}}(x^{2}+{\frac {1}{4}})^{3/2}|_{0}^{10}}{2\left({\frac {1}{2}}x{\sqrt {x^{2}+{\frac {1}{4}}}}+{\frac {1}{2}}\cdot {\frac {1}{4}}\ln |x+{\sqrt {x^{2}+{\frac {1}{4}}}}|\right)|_{0}^{10}}}=}
=
2
3
(
10
2
+
1
4
)
3
/
2
−
2
3
(
0
2
+
1
4
)
3
/
2
(
x
x
2
+
1
4
+
1
4
ln
|
x
+
x
2
+
1
4
|
)
|
0
10
=
{\displaystyle ={\frac {{\frac {2}{3}}(10^{2}+{\frac {1}{4}})^{3/2}-{\frac {2}{3}}(0^{2}+{\frac {1}{4}})^{3/2}}{\left(x{\sqrt {x^{2}+{\frac {1}{4}}}}+{\frac {1}{4}}\ln |x+{\sqrt {x^{2}+{\frac {1}{4}}}}|\right)|_{0}^{10}}}=}
=
2
3
⋅
100.25
3
/
2
−
2
3
(
1
2
)
3
10
100.25
+
1
4
ln
|
10
+
100.25
|
−
1
4
ln
|
1
2
|
=
{\displaystyle ={\frac {{\frac {2}{3}}\cdot 100.25^{3/2}-{\frac {2}{3}}\left({\frac {1}{2}}\right)^{3}}{10{\sqrt {100.25}}+{\frac {1}{4}}\ln |10+{\sqrt {100.25}}|-{\frac {1}{4}}\ln |{\frac {1}{2}}|}}=}
=(669,16822851623458973388183928978 - (2/3)*(1/8))/(100,12492197250392863848606074161 + 0,74908917210724008285110536237573 - (-0,17328679513998632735430803036454))=
=(669,16822851623458973388183928978 - 1/12)/101,04729793975115504869147413435=
=669,08489518290125640054850595645/101,04729793975115504869147413435=6,6215020967887643029775923955111;
čia pasinaudojome integralų lentele
∫
x
x
2
±
a
2
d
x
=
1
3
(
x
2
±
a
2
)
3
/
2
{\displaystyle \int x{\sqrt {x^{2}\pm a^{2}}}dx={\frac {1}{3}}(x^{2}\pm a^{2})^{3/2}}
ir
∫
x
2
±
a
2
d
x
=
1
2
x
x
2
±
a
2
±
1
2
a
2
ln
|
x
+
x
2
±
a
2
|
.
{\displaystyle \int {\sqrt {x^{2}\pm a^{2}}}dx={\frac {1}{2}}x{\sqrt {x^{2}\pm a^{2}}}\pm {\frac {1}{2}}a^{2}\ln |x+{\sqrt {x^{2}\pm a^{2}}}|.}
Tuo atveju, jeigu x kinta nuo 0 iki 5 tada:
m
=
∫
0
5
γ
1
+
[
y
′
]
2
d
x
∫
0
5
1
+
[
y
′
]
2
d
x
=
∫
0
5
x
1
+
4
x
2
d
x
∫
0
5
1
+
4
x
2
d
x
=
2
∫
0
5
x
1
4
+
x
2
d
x
2
∫
0
5
1
4
+
x
2
d
x
=
{\displaystyle m={\frac {\int _{0}^{5}\gamma {\sqrt {1+[y']^{2}}}dx}{\int _{0}^{5}{\sqrt {1+[y']^{2}}}dx}}={\frac {\int _{0}^{5}x{\sqrt {1+4x^{2}}}dx}{\int _{0}^{5}{\sqrt {1+4x^{2}}}dx}}={\frac {2\int _{0}^{5}x{\sqrt {{\frac {1}{4}}+x^{2}}}dx}{2\int _{0}^{5}{\sqrt {{\frac {1}{4}}+x^{2}}}dx}}=}
=
2
3
(
5
2
+
1
4
)
3
/
2
−
2
3
(
0
2
+
1
4
)
3
/
2
(
x
x
2
+
1
4
+
1
4
ln
|
x
+
x
2
+
1
4
|
)
|
0
5
=
{\displaystyle ={\frac {{\frac {2}{3}}(5^{2}+{\frac {1}{4}})^{3/2}-{\frac {2}{3}}(0^{2}+{\frac {1}{4}})^{3/2}}{\left(x{\sqrt {x^{2}+{\frac {1}{4}}}}+{\frac {1}{4}}\ln |x+{\sqrt {x^{2}+{\frac {1}{4}}}}|\right)|_{0}^{5}}}=}
=
2
3
⋅
25.25
3
/
2
−
2
3
(
1
2
)
3
5
25.25
+
1
4
ln
|
5
+
25.25
|
−
1
4
ln
|
1
2
|
=
{\displaystyle ={\frac {{\frac {2}{3}}\cdot 25.25^{3/2}-{\frac {2}{3}}\left({\frac {1}{2}}\right)^{3}}{5{\sqrt {25.25}}+{\frac {1}{4}}\ln |5+{\sqrt {25.25}}|-{\frac {1}{4}}\ln |{\frac {1}{2}}|}}=}
=(84,586453144434159774345479682393-1/12)/(25,124689052802225675548162281899+0,57626894243450610735734085403457-(-0,17328679513998632735430803036454))=
=84,50311981110082644101214634906/25,874244790376718110259811166298=3,2659163772976925830147095531443.
Jėgos darbas padarytas judant kreive plokštumoje apskaičiuojamas pagal formulę
A
=
∫
B
C
P
d
x
+
Q
d
y
.
{\displaystyle A=\int _{BC}Pdx+Qdy.}
Jėgos darbas padarytas judant erdvine kreive apskaičiuojamas taip:
A
=
∫
B
C
P
d
x
+
Q
d
y
+
R
d
z
.
{\displaystyle A=\int _{BC}Pdx+Qdy+Rdz.}
Apskaičiuosime darbą jėgos
F
(
x
,
y
)
{\displaystyle F(x,y)}
persikeliant materialiam taškui elipse teigiama kryptimi, jeigu jėga kiekviename taške (x; y) elipsės nukreipta į elipsės centrą ir pagal dydį lygi atstumui nuo taško (x; y) iki elipsės centro.
Pagal sąlyga,
|
F
(
x
,
y
)
|
=
x
2
+
y
2
;
{\displaystyle |F(x,y)|={\sqrt {x^{2}+y^{2}}};}
Jėgos F(x, y) koordinatės tokios:
P
=
−
x
,
{\displaystyle P=-x,}
Q
=
−
y
{\displaystyle Q=-y}
[ženklas "
−
{\displaystyle -}
" paaiškinamas tuo, kad jėga nukreipta į tašką (0; 0)]. Pagal formulę turime
A
=
−
∮
L
x
d
x
+
y
d
y
,
{\displaystyle A=-\oint _{L}xdx+ydy,}
kur L - elipsė
x
=
a
cos
t
,
y
=
b
sin
t
,
{\displaystyle x=a\cos t,\;y=b\sin t,}
0
≤
t
≤
2
π
.
{\displaystyle 0\leq t\leq 2\pi .}
Todėl
A
=
−
∫
0
2
π
a
cos
t
(
−
a
sin
t
)
d
t
+
b
sin
(
t
)
b
cos
(
t
)
d
t
=
−
∫
0
2
π
(
b
2
−
a
2
)
sin
(
t
)
cos
t
d
t
=
{\displaystyle A=-\int _{0}^{2\pi }a\cos t(-a\sin t)dt+b\sin(t)b\cos(t)dt=-\int _{0}^{2\pi }(b^{2}-a^{2})\sin(t)\cos t\;dt=}
=
a
2
−
b
2
2
∫
0
2
π
sin
(
2
t
)
d
t
=
a
2
−
b
2
4
(
−
cos
(
2
t
)
)
|
0
2
π
=
0.
{\displaystyle ={a^{2}-b^{2} \over 2}\int _{0}^{2\pi }\sin(2t)dt={a^{2}-b^{2} \over 4}(-\cos(2t))|_{0}^{2\pi }=0.}
Jei t keistusi nuo 0 iki
π
2
,
{\displaystyle {\pi \over 2},}
integralas butu lygus
a
2
−
b
2
4
(
−
cos
(
2
t
)
)
|
0
π
2
=
a
2
−
b
2
4
(
−
cos
(
2
⋅
π
2
)
)
−
a
2
−
b
2
4
(
−
cos
(
2
⋅
0
)
)
=
{\displaystyle {a^{2}-b^{2} \over 4}(-\cos(2t))|_{0}^{\pi \over 2}={a^{2}-b^{2} \over 4}(-\cos(2\cdot {\pi \over 2}))-{a^{2}-b^{2} \over 4}(-\cos(2\cdot 0))=}
=
a
2
−
b
2
4
(
−
cos
π
+
cos
(
0
)
)
=
a
2
−
b
2
4
(
−
(
−
1
)
+
1
)
=
a
2
−
b
2
2
.
{\displaystyle ={a^{2}-b^{2} \over 4}(-\cos \pi +\cos(0))={a^{2}-b^{2} \over 4}(-(-1)+1)={a^{2}-b^{2} \over 2}.}
Tarkime, jei
a
=
5
,
b
=
3
,
{\displaystyle a=5,\;b=3,}
tai padarytas darbas pirmame ketvirtyje yra
A
=
a
2
−
b
2
2
=
5
2
−
3
2
2
=
25
−
9
2
=
16
2
=
8.
{\displaystyle A={a^{2}-b^{2} \over 2}={5^{2}-3^{2} \over 2}={\frac {25-9}{2}}={\frac {16}{2}}=8.}
Kad patikrinti ar apskaičiuota teisingai reikia sudėti visas x reikšmes ant elipsės linijos pirmame ketvirtyje. Taip pat reikia sudėti visas y reikšmes ant elipsės linijos pirmame ketvirtyje. Galiausiai reikia sudėti sumas x ir y reikšmių, kad gauti darbą A pirmame ketvirtyje.
Arba tiesiog darbas yra lygus
A
=
1
100
∑
n
=
1
100
x
n
2
+
y
n
2
;
{\displaystyle A={\frac {1}{100}}\sum _{n=1}^{100}{\sqrt {x_{n}^{2}+y_{n}^{2}}};}
čia
x
n
{\displaystyle x_{n}}
yra visos x reikšmės ant elipsės linijos pirmame ketvirtyje nuo 0 iki a ; analogiškai
y
n
{\displaystyle y_{n}}
yra visos y reikšmės ant elipsės linijos pirmame ketvirtyje nuo 0 iki b .
Kuris iš šių variantų yra darbas A , paaiškės pasumavus ir paskaičiavus. Sutapimas ar ne, bet
A
=
3
+
5
=
8
{\displaystyle A=3+5=8}
pagal pirmą variantą. Na, o pagal antrą variantą turime:
A
=
5
10
∑
n
=
1
10
(
n
(
3
/
10
)
)
2
+
(
(
10
−
n
)
(
5
/
10
)
)
2
=
{\displaystyle A={\frac {5}{10}}\sum _{n=1}^{10}{\sqrt {(n(3/10))^{2}+((10-n)(5/10))^{2}}}=}
A
=
(
0.3
2
+
5
2
+
0.6
2
+
4.5
2
+
0.9
2
+
4
2
+
1.2
2
+
3.5
2
+
1.5
2
+
3
2
+
{\displaystyle A=({\sqrt {0.3^{2}+5^{2}}}+{\sqrt {0.6^{2}+4.5^{2}}}+{\sqrt {0.9^{2}+4^{2}}}+{\sqrt {1.2^{2}+3.5^{2}}}+{\sqrt {1.5^{2}+3^{2}}}+}
+
1.8
2
+
2.5
2
+
2.1
2
+
2
2
+
2.4
2
+
1.5
2
+
2.7
2
+
1
2
+
3
2
+
0.5
2
)
/
10
=
{\displaystyle +{\sqrt {1.8^{2}+2.5^{2}}}+{\sqrt {2.1^{2}+2^{2}}}+{\sqrt {2.4^{2}+1.5^{2}}}+{\sqrt {2.7^{2}+1^{2}}}+{\sqrt {3^{2}+0.5^{2}}})/10=}
=
5
(
5.0089919
+
4.539823785
+
4.1
+
3.7
+
3.354101966
+
{\displaystyle =5(5.0089919+4.539823785+4.1+3.7+3.354101966+}
+
3.08058436
+
2.9
+
2.83019434
+
2.879236
+
3.041381265
)
/
10
=
{\displaystyle +3.08058436+2.9+2.83019434+2.879236+3.041381265)/10=}
=
5
⋅
35.43431361
/
10
=
17.717156805.
{\displaystyle =5\cdot 35.43431361/10=17.717156805.}
Iš tikro, ko gero, mes apskaičiuojame tokiu budu ne darbą atlikta apeinant elipsės liniją pirmame ketvirtyje, o darbą atlikta apeinant tiesę pirmame ketvirtyje. Štai kodas programos "Free Pascal" (FreePascal IDE for Win32 for i386; Target CPU: i386; Version 1.0.12 2011/04/23; <Compiler Version 2.4.4>; <Debugger GDB 7.2>; Copyright <C> 1998-2009):
var
a:longint;
c:real;
begin
for a:=1 to 10
do
c:=c+0.5*sqrt(sqr(a*0.3)+sqr((11-a)*0.5));
writeln(c);
readln;
end.
gauname
A
=
17.7171568203085.
{\displaystyle A=17.7171568203085.}
Panaudojus šį kodą:
var
a:longint;
c:real;
begin
for a:=1 to 1000000000 do
c:=c+0.000000005*sqrt(sqr(a*0.000000003)+sqr((1000000001-a)*0.000000005));
writeln(c);
readln;
end.
gauname atsakymą
A
=
16.4328975236327
{\displaystyle A=16.4328975236327}
po 22 sekundžių ant 2.6 GHz procesoriaus.
Panaudojus šį (teisingesnį) kodą:
var
a:longint;
c:real;
begin
for a:=0 to 1000000000 do
c:=c+sqrt(sqr(a*0.000000003)+sqr((1000000000-a)*0.000000005))/1000000001;
writeln(5*c);
readln;
end.
gauname atsakymą
A
=
16.4328975142850
{\displaystyle A=16.4328975142850}
po 25 sekundžių ant 2.6 GHz procesoriaus.
Integruojant gauname:
A
=
∫
0
5
x
2
+
(
3
−
3
x
5
)
2
d
x
=
{\displaystyle A=\int _{0}^{5}{\sqrt {x^{2}+(3-{\frac {3x}{5}})^{2}}}dx=}
=
1
340
(
34
x
−
45
)
34
x
2
−
90
x
+
225
−
1125
arcsinh
(
3
5
−
34
x
75
)
68
34
|
0
5
=
{\displaystyle ={\frac {1}{340}}(34x-45){\sqrt {34x^{2}-90x+225}}-{\frac {1125\operatorname {arcsinh} ({\frac {3}{5}}-{\frac {34x}{75}})}{68{\sqrt {34}}}}|_{0}^{5}=}
=
34
⋅
5
−
45
340
34
⋅
5
2
−
90
⋅
5
+
225
−
1125
arcsinh
(
3
5
−
34
⋅
5
75
)
68
34
−
(
34
⋅
0
−
45
340
34
⋅
0
2
−
90
⋅
0
+
225
−
1125
arcsinh
(
3
5
−
34
⋅
0
75
)
68
34
)
=
{\displaystyle ={\frac {34\cdot 5-45}{340}}{\sqrt {34\cdot 5^{2}-90\cdot 5+225}}-{\frac {1125\operatorname {arcsinh} ({\frac {3}{5}}-{\frac {34\cdot 5}{75}})}{68{\sqrt {34}}}}-\left({\frac {34\cdot 0-45}{340}}{\sqrt {34\cdot 0^{2}-90\cdot 0+225}}-{\frac {1125\operatorname {arcsinh} ({\frac {3}{5}}-{\frac {34\cdot 0}{75}})}{68{\sqrt {34}}}}\right)=}
=
170
−
45
340
850
−
450
+
225
−
1125
arcsinh
(
3
5
−
170
75
)
68
34
−
(
−
45
340
225
−
1125
arcsinh
(
3
5
)
68
34
)
=
{\displaystyle ={\frac {170-45}{340}}{\sqrt {850-450+225}}-{\frac {1125\operatorname {arcsinh} ({\frac {3}{5}}-{\frac {170}{75}})}{68{\sqrt {34}}}}-\left({\frac {-45}{340}}{\sqrt {225}}-{\frac {1125\operatorname {arcsinh} ({\frac {3}{5}})}{68{\sqrt {34}}}}\right)=}
=
125
340
625
−
1125
arcsinh
(
3
⋅
75
−
170
⋅
5
5
⋅
75
)
68
34
−
(
−
9
68
⋅
15
−
1125
arcsinh
(
0.6
)
396.50472884948
)
=
{\displaystyle ={\frac {125}{340}}{\sqrt {625}}-{\frac {1125\operatorname {arcsinh} ({\frac {3\cdot 75-170\cdot 5}{5\cdot 75}})}{68{\sqrt {34}}}}-\left({\frac {-9}{68}}\cdot 15-{\frac {1125\operatorname {arcsinh} (0.6)}{396.50472884948}}\right)=}
=
25
68
⋅
25
−
1125
arcsinh
(
225
−
850
375
)
396.50472884948
−
(
−
135
68
−
1125
⋅
0.5688248987
396.50472884948
)
=
{\displaystyle ={\frac {25}{68}}\cdot 25-{\frac {1125\operatorname {arcsinh} ({\frac {225-850}{375}})}{396.50472884948}}-\left({\frac {-135}{68}}-{\frac {1125\cdot 0.5688248987}{396.50472884948}}\right)=}
=
625
68
−
1125
arcsinh
(
−
625
375
)
396.50472884948
−
(
−
135
68
−
639.928011
396.50472884948
)
=
{\displaystyle ={\frac {625}{68}}-{\frac {1125\operatorname {arcsinh} ({\frac {-625}{375}})}{396.50472884948}}-\left({\frac {-135}{68}}-{\frac {639.928011}{396.50472884948}}\right)=}
=
9.19117647
−
1125
arcsinh
(
−
5
3
)
396.50472884948
−
(
−
1.98529412
−
1.613922772
)
=
{\displaystyle =9.19117647-{\frac {1125\operatorname {arcsinh} (-{\frac {5}{3}})}{396.50472884948}}-(-1.98529412-1.613922772)=}
=
9.19117647
−
1125
⋅
(
−
1.283795663
)
396.50472884948
−
(
−
3.599216892
)
=
{\displaystyle =9.19117647-{\frac {1125\cdot (-1.283795663)}{396.50472884948}}-(-3.599216892)=}
=
9.19117647
+
3.642504151
+
3.599216892
=
16.43289751.
{\displaystyle =9.19117647+3.642504151+3.599216892=16.43289751.}
Apskaičiuojame viską nepriekaištingai tiksliai su kompiuterio kalkuliatoriumi:
A
=
625
68
−
1125
arcsinh
(
−
5
/
3
)
68
34
−
(
−
135
68
−
1125
arcsinh
(
3
/
5
)
68
34
)
=
{\displaystyle A={\frac {625}{68}}-{\frac {1125\operatorname {arcsinh} (-5/3)}{68{\sqrt {34}}}}-\left({\frac {-135}{68}}-{\frac {1125\operatorname {arcsinh} (3/5)}{68{\sqrt {34}}}}\right)=}
=
12.833680621236990323769396193322
−
(
−
3.5992168895913637545005254840611
)
=
16.432897510828354078269921677383.
{\displaystyle =12.833680621236990323769396193322-(-3.5992168895913637545005254840611)=16.432897510828354078269921677383.}
Toliau bandome rasti atlikta darbą apeita tiese
y
=
3
−
3
x
5
{\displaystyle y=3-{\frac {3x}{5}}}
integruojant
A
=
−
∮
L
x
d
x
+
y
d
y
.
{\displaystyle A=-\oint _{L}xdx+ydy.}
Randame
d
y
=
−
3
5
d
x
.
{\displaystyle dy=-{\frac {3}{5}}\;dx.}
Turime, kad x integravimo ribos yra 0 iki 5, o y integravimo ribos yra nuo 0 iki 3. Gauname:
A
=
−
∮
L
x
d
x
+
y
d
y
=
−
(
∫
0
5
x
d
x
−
3
5
(
3
−
3
x
5
)
d
x
)
=
−
∫
0
5
(
x
−
3
5
(
3
−
3
x
5
)
)
d
x
=
{\displaystyle A=-\oint _{L}xdx+ydy=-(\int _{0}^{5}x\;dx-{\frac {3}{5}}(3-{\frac {3x}{5}})dx)=-\int _{0}^{5}(x-{\frac {3}{5}}(3-{\frac {3x}{5}}))dx=}
=
−
∫
0
5
(
x
−
9
5
+
9
x
25
)
d
x
=
−
∫
0
5
(
−
9
5
+
25
x
+
9
x
25
)
d
x
=
−
∫
0
5
(
34
x
25
−
9
5
)
d
x
=
{\displaystyle =-\int _{0}^{5}(x-{\frac {9}{5}}+{\frac {9x}{25}})dx=-\int _{0}^{5}(-{\frac {9}{5}}+{\frac {25x+9x}{25}})dx=-\int _{0}^{5}({\frac {34x}{25}}-{\frac {9}{5}})dx=}
=
−
(
34
x
2
25
⋅
2
−
9
5
x
)
|
0
5
=
−
[
(
17
⋅
5
2
25
−
9
5
⋅
5
)
−
(
17
⋅
0
2
25
−
9
5
⋅
0
)
]
=
−
(
17
−
9
)
=
−
8.
{\displaystyle =-({\frac {34x^{2}}{25\cdot 2}}-{\frac {9}{5}}x)|_{0}^{5}=-[({\frac {17\cdot 5^{2}}{25}}-{\frac {9}{5}}\cdot 5)-({\frac {17\cdot 0^{2}}{25}}-{\frac {9}{5}}\cdot 0)]=-(17-9)=-8.}
Pastebime, kad jeigu elipsė būtų apskritimas tai pirmame ketvirtyje atliktas darbas A=0. Taip yra todėl, kad kai x didėja, tada y reikšmės mažėja. Todėl skaičiuoti darbą, ko gero, galėtų būti teisingiau
A
=
∮
L
x
d
x
−
y
d
y
{\displaystyle A=\oint _{L}xdx-ydy}
arba
A
=
∮
L
−
x
d
x
+
y
d
y
.
{\displaystyle A=\oint _{L}-xdx+ydy.}
Tuomet akivaizdu, kad
A
=
a
2
+
b
2
2
=
5
2
+
3
2
2
=
17.
{\displaystyle A={\frac {a^{2}+b^{2}}{2}}={\frac {5^{2}+3^{2}}{2}}=17.}
Tą patį darba gauname ir apeinant tiese:
A
=
∮
L
x
d
x
−
y
d
y
=
∫
0
5
x
d
x
−
−
3
5
(
3
−
3
x
5
)
d
x
=
∫
0
5
(
x
+
3
5
(
3
−
3
x
5
)
)
d
x
=
{\displaystyle A=\oint _{L}xdx-ydy=\int _{0}^{5}x\;dx-{\frac {-3}{5}}(3-{\frac {3x}{5}})dx=\int _{0}^{5}(x+{\frac {3}{5}}(3-{\frac {3x}{5}}))dx=}
=
∫
0
5
(
x
+
9
5
−
9
x
25
)
d
x
=
∫
0
5
(
9
5
+
25
x
−
9
x
25
)
d
x
=
∫
0
5
(
16
x
25
+
9
5
)
d
x
=
{\displaystyle =\int _{0}^{5}(x+{\frac {9}{5}}-{\frac {9x}{25}})dx=\int _{0}^{5}({\frac {9}{5}}+{\frac {25x-9x}{25}})dx=\int _{0}^{5}({\frac {16x}{25}}+{\frac {9}{5}})dx=}
=
(
16
x
2
25
⋅
2
+
9
5
x
)
|
0
5
=
(
8
⋅
5
2
25
+
9
5
⋅
5
)
−
(
17
⋅
0
2
25
+
9
5
⋅
0
)
=
8
+
9
=
17.
{\displaystyle =({\frac {16x^{2}}{25\cdot 2}}+{\frac {9}{5}}x)|_{0}^{5}=({\frac {8\cdot 5^{2}}{25}}+{\frac {9}{5}}\cdot 5)-({\frac {17\cdot 0^{2}}{25}}+{\frac {9}{5}}\cdot 0)=8+9=17.}
Lygiai tą patį darbą gausime ir integruojant taip:
A
=
∮
L
x
d
x
−
y
d
y
=
∫
0
5
x
d
x
+
∫
0
3
y
d
y
=
x
2
2
|
0
5
+
y
2
2
|
0
3
=
25
2
+
9
2
=
17.
{\displaystyle A=\oint _{L}xdx-ydy=\int _{0}^{5}x\;dx+\int _{0}^{3}y\;dy={\frac {x^{2}}{2}}|_{0}^{5}+{\frac {y^{2}}{2}}|_{0}^{3}={\frac {25}{2}}+{\frac {9}{2}}=17.}
Tą patį gausime ir taip integruojant nuo 0 iki 5:
A
=
∫
F
d
F
=
∫
0
5
x
2
+
(
3
−
3
x
5
)
2
d
(
x
2
+
(
3
−
3
x
5
)
2
)
=
{\displaystyle A=\int F\;\mathbf {d} F=\int _{0}^{5}{\sqrt {x^{2}+(3-{\frac {3x}{5}})^{2}}}\;\mathbf {d} \left({\sqrt {x^{2}+(3-{\frac {3x}{5}})^{2}}}\right)=}
=
∫
0
5
x
2
+
(
3
−
3
x
5
)
2
0.5
(
x
2
+
(
3
−
3
x
/
5
)
2
)
−
0.5
(
2
x
+
2
(
3
−
3
x
/
5
)
(
−
0.6
)
)
d
x
=
{\displaystyle =\int _{0}^{5}{\sqrt {x^{2}+(3-{\frac {3x}{5}})^{2}}}0.5(x^{2}+(3-3x/5)^{2})^{-0.5}(2x+2(3-3x/5)(-0.6))\;dx=}
=
∫
0
5
x
2
+
(
3
−
3
x
5
)
2
(
x
2
+
(
3
−
3
x
/
5
)
2
)
−
0.5
(
x
−
0.6
(
3
−
3
x
/
5
)
d
x
=
{\displaystyle =\int _{0}^{5}{\sqrt {x^{2}+(3-{\frac {3x}{5}})^{2}}}(x^{2}+(3-3x/5)^{2})^{-0.5}(x-0.6(3-3x/5)\;dx=}
=
∫
0
5
x
2
+
(
3
−
3
x
5
)
2
(
x
−
1.8
+
0.36
x
)
x
2
+
(
3
−
3
x
/
5
)
2
d
x
=
{\displaystyle =\int _{0}^{5}{\frac {{\sqrt {x^{2}+(3-{\frac {3x}{5}})^{2}}}(x-1.8+0.36x)}{\sqrt {x^{2}+(3-3x/5)^{2}}}}\;dx=}
=
∫
0
5
(
1.36
x
−
1.8
)
d
x
=
(
1.36
x
2
2
−
1.8
x
)
|
0
5
=
{\displaystyle =\int _{0}^{5}(1.36x-1.8)\;dx=(1.36{\frac {x^{2}}{2}}-1.8x)|_{0}^{5}=}
=
[
(
0.68
x
−
1.8
)
x
]
|
0
5
=
(
0.68
⋅
5
−
1.8
)
⋅
5
=
(
3.4
−
1.8
)
⋅
5
=
1.6
⋅
5
=
8.
{\displaystyle =[(0.68x-1.8)x]|_{0}^{5}=(0.68\cdot 5-1.8)\cdot 5=(3.4-1.8)\cdot 5=1.6\cdot 5=8.}
Nustatyti tiesės
y
=
3
−
3
x
5
{\displaystyle y=3-{\frac {3x}{5}}}
masę tik pirmame ketvirtyje. Tiesės tankis
γ
{\displaystyle \gamma }
tolstant tiesės taškams nuo centro (koordinačių pradžios taško O ) didėja proporcingai, t. y.
γ
=
x
2
+
y
2
.
{\displaystyle \gamma ={\sqrt {x^{2}+y^{2}}}.}
Sprendimas . Pasinaudosime masės skaičiavimo formule
m
=
∫
L
γ
1
+
[
y
′
]
2
d
x
=
∫
0
5
x
2
+
y
2
1
+
[
y
′
]
2
d
x
=
{\displaystyle m=\int _{L}\gamma {\sqrt {1+[y']^{2}}}\;dx=\int _{0}^{5}{\sqrt {x^{2}+y^{2}}}{\sqrt {1+[y']^{2}}}\;dx=}
=
∫
0
5
x
2
+
(
3
−
3
x
5
)
2
1
+
(
−
3
5
)
2
d
x
=
{\displaystyle =\int _{0}^{5}{\sqrt {x^{2}+\left(3-{\frac {3x}{5}}\right)^{2}}}{\sqrt {1+\left(-{\frac {3}{5}}\right)^{2}}}\;dx=}
=
∫
0
5
x
2
+
9
−
18
x
5
+
9
x
2
25
1
+
9
25
d
x
=
{\displaystyle =\int _{0}^{5}{\sqrt {x^{2}+9-{\frac {18x}{5}}+{\frac {9x^{2}}{25}}}}{\sqrt {1+{\frac {9}{25}}}}\;dx=}
=
∫
0
5
9
−
18
x
5
+
34
x
2
25
34
25
d
x
=
{\displaystyle =\int _{0}^{5}{\sqrt {9-{\frac {18x}{5}}+{\frac {34x^{2}}{25}}}}{\sqrt {\frac {34}{25}}}\;dx=}
=
34
5
∫
0
5
34
25
x
2
−
18
5
x
+
9
d
x
=
{\displaystyle ={\frac {\sqrt {34}}{5}}\int _{0}^{5}{\sqrt {{\frac {34}{25}}x^{2}-{\frac {18}{5}}x+9}}\;dx=}
=
34
5
∫
0
5
1.36
x
2
−
3.6
x
+
9
d
x
=
{\displaystyle ={\frac {\sqrt {34}}{5}}\int _{0}^{5}{\sqrt {1.36x^{2}-3.6x+9}}\;dx=}
=
34
5
(
−
3.6
+
2
⋅
1.36
x
4
⋅
1.36
1.36
x
2
−
3.6
x
+
9
+
4
⋅
1.36
⋅
9
−
(
−
3.6
)
2
8
⋅
1.36
3
/
2
ln
|
2
⋅
1.36
x
−
3.6
+
2
1.36
(
1.36
x
2
−
3.6
x
+
9
)
|
)
|
0
5
=
{\displaystyle ={\frac {\sqrt {34}}{5}}\left({\frac {-3.6+2\cdot 1.36x}{4\cdot 1.36}}{\sqrt {1.36x^{2}-3.6x+9}}+{\frac {4\cdot 1.36\cdot 9-(-3.6)^{2}}{8\cdot 1.36^{3/2}}}\ln |2\cdot 1.36x-3.6+2{\sqrt {1.36(1.36x^{2}-3.6x+9)}}|\right)|_{0}^{5}=}
=
34
5
(
−
3.6
+
2.72
x
5.44
1.36
x
2
−
3.6
x
+
9
+
48.96
−
12.96
8
⋅
2.515456
1
/
2
ln
|
2.72
x
−
3.6
+
2
1.36
(
1.36
x
2
−
3.6
x
+
9
)
|
)
|
0
5
=
{\displaystyle ={\frac {\sqrt {34}}{5}}\left({\frac {-3.6+2.72x}{5.44}}{\sqrt {1.36x^{2}-3.6x+9}}+{\frac {48.96-12.96}{8\cdot 2.515456^{1/2}}}\ln |2.72x-3.6+2{\sqrt {1.36(1.36x^{2}-3.6x+9)}}|\right)|_{0}^{5}=}
=
34
5
(
−
3.6
+
2.72
x
5.44
1.36
x
2
−
3.6
x
+
9
+
36
12.68815132
ln
|
2.72
x
−
3.6
+
2
1.36
(
1.36
x
2
−
3.6
x
+
9
)
|
)
|
0
5
=
{\displaystyle ={\frac {\sqrt {34}}{5}}\left({\frac {-3.6+2.72x}{5.44}}{\sqrt {1.36x^{2}-3.6x+9}}+{\frac {36}{12.68815132}}\ln |2.72x-3.6+2{\sqrt {1.36(1.36x^{2}-3.6x+9)}}|\right)|_{0}^{5}=}
=
34
5
(
−
3.6
+
2.72
⋅
5
5.44
1.36
⋅
25
−
3.6
⋅
5
+
9
+
2.8372927689
ln
|
2.72
⋅
5
−
3.6
+
2
1.36
(
1.36
⋅
25
−
3.6
⋅
5
+
9
)
|
)
−
{\displaystyle ={\frac {\sqrt {34}}{5}}\left({\frac {-3.6+2.72\cdot 5}{5.44}}{\sqrt {1.36\cdot 25-3.6\cdot 5+9}}+2.8372927689\ln |2.72\cdot 5-3.6+2{\sqrt {1.36(1.36\cdot 25-3.6\cdot 5+9)}}|\right)-}
−
34
5
(
−
3.6
+
2.72
⋅
0
5.44
1.36
⋅
0
2
−
3.6
⋅
0
+
9
+
2.8372927689
ln
|
2.72
⋅
0
−
3.6
+
2
1.36
(
1.36
⋅
0
2
−
3.6
⋅
0
+
9
)
|
)
=
{\displaystyle -{\frac {\sqrt {34}}{5}}\left({\frac {-3.6+2.72\cdot 0}{5.44}}{\sqrt {1.36\cdot 0^{2}-3.6\cdot 0+9}}+2.8372927689\ln |2.72\cdot 0-3.6+2{\sqrt {1.36(1.36\cdot 0^{2}-3.6\cdot 0+9)}}|\right)=}
=
34
5
(
10
5.44
34
−
18
+
9
+
2.8372927689
ln
|
13.6
−
3.6
+
2
1.36
(
34
−
18
+
9
)
|
)
−
{\displaystyle ={\frac {\sqrt {34}}{5}}\left({\frac {10}{5.44}}{\sqrt {34-18+9}}+2.8372927689\ln |13.6-3.6+2{\sqrt {1.36(34-18+9)}}|\right)-}
−
34
5
(
−
3.6
5.44
9
+
2.8372927689
ln
|
−
3.6
+
2
1.36
⋅
9
|
)
=
{\displaystyle -{\frac {\sqrt {34}}{5}}\left({\frac {-3.6}{5.44}}{\sqrt {9}}+2.8372927689\ln |-3.6+2{\sqrt {1.36\cdot 9}}|\right)=}
=
34
5
(
10
5.44
25
+
2.8372927689
ln
|
10
+
2
1.36
⋅
25
|
)
−
34
5
(
−
3.6
5.44
⋅
3
+
2.8372927689
ln
|
−
3.6
+
2
12.24
|
)
=
{\displaystyle ={\frac {\sqrt {34}}{5}}\left({\frac {10}{5.44}}{\sqrt {25}}+2.8372927689\ln |10+2{\sqrt {1.36\cdot 25}}|\right)-{\frac {\sqrt {34}}{5}}\left({\frac {-3.6}{5.44}}\cdot 3+2.8372927689\ln |-3.6+2{\sqrt {12.24}}|\right)=}
=
34
5
(
50
5.44
+
2.8372927689
ln
|
10
+
2
34
|
)
−
34
5
(
−
10.8
5.44
+
2.8372927689
ln
|
−
3.6
+
2
12.24
|
)
=
{\displaystyle ={\frac {\sqrt {34}}{5}}\left({\frac {50}{5.44}}+2.8372927689\ln |10+2{\sqrt {34}}|\right)-{\frac {\sqrt {34}}{5}}\left({\frac {-10.8}{5.44}}+2.8372927689\ln |-3.6+2{\sqrt {12.24}}|\right)=}
=
34
5
(
9.191176471
+
2.8372927689
ln
|
21.66190379
|
)
−
34
5
(
−
10.8
5.44
+
2.8372927689
ln
|
−
3.6
+
2
12.24
|
)
=
{\displaystyle ={\frac {\sqrt {34}}{5}}\left(9.191176471+2.8372927689\ln |21.66190379|\right)-{\frac {\sqrt {34}}{5}}\left({\frac {-10.8}{5.44}}+2.8372927689\ln |-3.6+2{\sqrt {12.24}}|\right)=}
=
34
5
(
9.191176471
+
8.726250336
)
−
34
5
(
−
1.985294118
+
3.469823414
)
=
{\displaystyle ={\frac {\sqrt {34}}{5}}(9.191176471+8.726250336)-{\frac {\sqrt {34}}{5}}(-1.985294118+3.469823414)=}
=
34
5
⋅
17.91742681
−
34
5
⋅
1.484529296
=
16.43289751
34
5
=
19.16388698.
{\displaystyle ={\frac {\sqrt {34}}{5}}\cdot 17.91742681-{\frac {\sqrt {34}}{5}}\cdot 1.484529296={\frac {16.43289751{\sqrt {34}}}{5}}=19.16388698.}
Kad tą patį apskaičiuoti su programa "Free Pascal" reikia surasti tiesės ilgį, kai x kinta nuo 0 iki 5 (tai yra tiesės ilgis tik pirmame ketviryje):
l
=
5
2
+
3
2
=
25
+
9
=
34
=
5.830951895.
{\displaystyle l={\sqrt {5^{2}+3^{2}}}={\sqrt {25+9}}={\sqrt {34}}=5.830951895.}
Todėl "Free Pascal" kodas yra toks:
var
a:longint;
c:real;
begin
for a:=1 to 1000000000 do
c:=c+sqrt(sqr(a*0.000000003)+sqr((1000000001-a)*0.000000005));
writeln(sqrt(sqr(3)+sqr(5))*c/1000000000);
readln;
end.
duodantis rezultatą 19,163886990613093 po 18 sekundžių su 2,6 GHz procesoriumi.
Nustatyti parabolės
y
=
x
2
{\displaystyle y=x^{2}}
masę pirmame ketvirtyje, kai x kinta nuo 0 iki 10. Tiesės tankis
γ
{\displaystyle \gamma }
tolstant tiesės taškams nuo centro (koordinačių pradžios taško O ) didėja proporcingai, t. y.
γ
=
x
2
+
y
2
.
{\displaystyle \gamma ={\sqrt {x^{2}+y^{2}}}.}
Sprendimas .
Integruojame (pasinaudodami integralų lentelės (31) formule ):
p
=
∫
0
10
(
x
)
2
+
(
x
2
)
2
d
x
=
∫
0
10
x
2
+
x
4
d
x
=
∫
0
10
x
1
+
x
2
d
x
=
{\displaystyle p=\int _{0}^{10}{\sqrt {(x)^{2}+(x^{2})^{2}}}dx=\int _{0}^{10}{\sqrt {x^{2}+x^{4}}}dx=\int _{0}^{10}x{\sqrt {1+x^{2}}}dx=}
=
1
3
(
x
2
+
1
)
3
/
2
|
0
10
=
1
3
(
10
2
+
1
)
3
/
2
−
1
3
(
0
2
+
1
)
3
/
2
=
{\displaystyle ={\frac {1}{3}}(x^{2}+1)^{3/2}|_{0}^{10}={\frac {1}{3}}(10^{2}+1)^{3/2}-{\frac {1}{3}}(0^{2}+1)^{3/2}=}
=
1
3
(
101
)
3
/
2
−
1
3
=
1
3
1030301
−
1
3
=
{\displaystyle ={\frac {1}{3}}(101)^{3/2}-{\frac {1}{3}}={\frac {1}{3}}{\sqrt {1030301}}-{\frac {1}{3}}=}
=338,01247924440330576404858539624.
Toliau, kad surasti kreivės masę (kai kiekviename kreivės taške tankis priklauso nuo tam tikros funkcijos), skaičiuojame:
m
=
∫
0
10
γ
1
+
[
y
′
]
2
d
x
=
∫
0
10
x
2
+
y
2
1
+
[
(
x
2
)
′
]
2
d
x
=
∫
0
10
x
2
+
(
x
2
)
2
1
+
[
2
x
]
2
d
x
=
{\displaystyle m=\int _{0}^{10}\gamma {\sqrt {1+[y']^{2}}}dx=\int _{0}^{10}{\sqrt {x^{2}+y^{2}}}{\sqrt {1+[(x^{2})']^{2}}}dx=\int _{0}^{10}{\sqrt {x^{2}+(x^{2})^{2}}}{\sqrt {1+[2x]^{2}}}dx=}
=
∫
0
10
x
2
+
x
4
1
+
4
x
2
d
x
=
∫
0
10
x
1
+
x
2
1
+
4
x
2
d
x
=
∫
0
10
x
4
x
4
+
5
x
2
+
1
d
x
.
{\displaystyle =\int _{0}^{10}{\sqrt {x^{2}+x^{4}}}{\sqrt {1+4x^{2}}}dx=\int _{0}^{10}x{\sqrt {1+x^{2}}}{\sqrt {1+4x^{2}}}dx=\int _{0}^{10}x{\sqrt {4x^{4}+5x^{2}+1}}dx.}
Toliau integruodami taip arba taip ir įstačius x=1 gauname 1,0565457675431157081260089778614 ir 0,95907194527687339898921071078133 atitinkamai. Kita vertus, integruojant taip ir taip gauname tą patį rezultatą
1
12
x
2
(
8
x
4
+
15
x
2
+
6
)
.
{\displaystyle {\frac {1}{12}}x^{2}(8x^{4}+15x^{2}+6).}
Todėl šį rezultatą ir panaudojame toliau integruodami:
∫
0
10
x
4
x
4
+
5
x
2
+
1
d
x
=
1
12
x
2
(
8
x
4
+
15
x
2
+
6
)
|
0
10
=
{\displaystyle \int _{0}^{10}x{\sqrt {4x^{4}+5x^{2}+1}}dx={\frac {1}{12}}x^{2}(8x^{4}+15x^{2}+6)|_{0}^{10}=}
=
1
12
⋅
10
2
(
8
⋅
10
4
+
15
⋅
10
2
+
6
)
−
0
=
{\displaystyle ={\frac {1}{12}}\cdot 10^{2}(8\cdot 10^{4}+15\cdot 10^{2}+6)-0=}
=
1
12
⋅
100
(
80000
+
1500
+
6
)
=
{\displaystyle ={\frac {1}{12}}\cdot 100(80000+1500+6)=}
=
1
12
⋅
100
⋅
81506
=
679216.6667.
{\displaystyle ={\frac {1}{12}}\cdot 100\cdot 81506=679216.6667.}
Nepriekaištingai tikslus atsakymas yra:
679216,66666666666666666666666667.
Todėl belieka patikrinti ar Wolframo internetinio integratoriaus atsakymas teisingas paėmus išvėstinę ir paskui įstačius x=1 bei palyginti su neišintegruotu reiškiniu:
(
1
12
x
2
(
8
x
4
+
15
x
2
+
6
)
)
′
=
(
1
12
(
8
x
6
+
15
x
4
+
6
x
2
)
)
′
=
1
12
(
48
x
5
+
60
x
3
+
12
x
)
=
4
x
5
+
5
x
3
+
x
=
4
+
5
+
1
=
10
;
{\displaystyle ({\frac {1}{12}}x^{2}(8x^{4}+15x^{2}+6))'=({\frac {1}{12}}(8x^{6}+15x^{4}+6x^{2}))'={\frac {1}{12}}(48x^{5}+60x^{3}+12x)=4x^{5}+5x^{3}+x=4+5+1=10;}
x
4
x
4
+
5
x
2
+
1
=
4
x
6
+
5
x
4
+
1
=
4
+
5
+
1
=
10
.
{\displaystyle x{\sqrt {4x^{4}+5x^{2}+1}}={\sqrt {4x^{6}+5x^{4}+1}}={\sqrt {4+5+1}}={\sqrt {10}}.}
Pasirodo, kad nepridėta šaknis įvedimo formoje į integratorių, bet integruojant taip ir taip gauname tokį patį rezultatą, kuris yra labai sudetingas ir ilgas. Net didžiausioje integralų lentelėje nėra kaip išintegruoti
∫
x
1
+
x
2
1
+
4
x
2
d
x
.
{\displaystyle \int x{\sqrt {1+x^{2}}}{\sqrt {1+4x^{2}}}dx.}
Yra tik
∫
a
+
b
x
c
+
p
x
d
x
,
{\displaystyle \int {\sqrt {a+bx}}{\sqrt {c+px}}dx,}
bet ir tai integravimas gaunasi su dar dviais pažiūrėjimais į integralų lentelę. Todėl pasinaudojame Free Pascal kodu:
var
a:longint;
c:real;
begin
for a:=1 to 1000000000 do
c:=c+(sqrt(sqr(a*0.00000001)+sqr(sqr(a*0.00000001)))-sqrt(sqr((a-1.0)*0.00000001)+sqr(sqr((a-1.0)*0.00000001))))*sqrt(sqr(a*0.00000001)+sqr(sqr(a*0.00000001)));
writeln(c);
readln;
end.
kuris duoda atsakymą m=5050,00000667382 po 53 sekundžių su 2,6 GHz procesoriumi.
Kai x kinta 0 iki 5, tai integruojant gauname
p
=
∫
0
5
(
x
)
2
+
(
x
2
)
2
d
x
=
∫
0
5
x
2
+
x
4
d
x
=
∫
0
10
x
1
+
x
2
d
x
=
{\displaystyle p=\int _{0}^{5}{\sqrt {(x)^{2}+(x^{2})^{2}}}dx=\int _{0}^{5}{\sqrt {x^{2}+x^{4}}}dx=\int _{0}^{10}x{\sqrt {1+x^{2}}}dx=}
=
1
3
(
x
2
+
1
)
3
/
2
|
0
5
=
1
3
(
5
2
+
1
)
3
/
2
−
1
3
(
0
2
+
1
)
3
/
2
=
{\displaystyle ={\frac {1}{3}}(x^{2}+1)^{3/2}|_{0}^{5}={\frac {1}{3}}(5^{2}+1)^{3/2}-{\frac {1}{3}}(0^{2}+1)^{3/2}=}
=
1
3
(
26
)
3
/
2
−
1
3
=
17576
−
1
3
=
{\displaystyle ={\frac {1}{3}}(26)^{3/2}-{\frac {1}{3}}={\frac {{\sqrt {17576}}-1}{3}}=}
=43,858169117804135193577942278197.
Tą patį atsakymą (43,8581691815329) gauname ir pasinaudodami Free Pascal kodu:
var
a:longint;
c:real;
begin
for a:=1 to 1000000000 do
c:=c+sqrt(sqr(5.0*a/1000000000)+sqr(sqr(5.0*a/1000000000)))/1000000000;
writeln(c*5);
readln;
end.
Kad rasti masę, kai x kinta 0 iki 5, pasinaudojame Free Pascal kodu:
var
a:longint;
c:real;
begin
for a:=1 to 1000000000 do
c:=c+(sqrt(sqr(5.0*a/1000000000)+sqr(sqr(5.0*a/1000000000)))-sqrt(sqr(5.0*(a-1.0)*0.000000001)+sqr(sqr(5.0*(a-1.0)*0.000000001))))*sqrt(sqr(5.0*a/1000000000)+sqr(sqr(5.0*a/1000000000)));
writeln(c);
readln;
end.
kuris duoda atsakymą
m
=
325.000000425112
{\displaystyle m=325.000000425112}
po 73 sekundžių su 2,6 GHz procesoriumi.
Alternatyvus Free Pascal kodas, kuris skaičiuoja pagal formulę
m
=
∫
0
5
x
2
+
y
2
1
+
[
y
′
]
2
d
x
=
∫
0
5
x
2
+
(
x
2
)
2
1
+
(
2
x
)
2
d
x
,
{\displaystyle m=\int _{0}^{5}{\sqrt {x^{2}+y^{2}}}{\sqrt {1+[y']^{2}}}dx=\int _{0}^{5}{\sqrt {x^{2}+(x^{2})^{2}}}{\sqrt {1+(2x)^{2}}}dx,}
yra toks:
var
a:longint;
c:real;
begin
for a:=1 to 1000000000 do
c:=c+sqrt(1+sqr(2*5.0*a/1000000000))*sqrt(sqr(5.0*a/1000000000)+sqr(sqr(5.0*a/1000000000)));
writeln(5*c/1000000000);
readln;
end
ir duoda atsakymą
m
=
327.860390075605
{\displaystyle m=327.860390075605}
po 48 sekundžių su 2,6 GHz procesoriumi. Optimizuotas šito kodo variantas:
var
a:longint;
c:real;
begin
for a:=1 to 1000000000 do
c:=c+sqrt(1+sqr(0.00000001*a))*sqrt(sqr(0.000000005*a)+sqr(sqr(0.000000005*a)));
writeln(0.000000005*c);
readln;
end.
duoda atsakymą
m
=
327.86039007560539
{\displaystyle m=327.86039007560539}
po 33 sekundžių su 2,6 GHz procesoriumi.
Kitoks kreivės masės apskaičiavimo Free Pascal kodas yra:
var
a:longint;
c:real;
begin
for a:=1 to 1000000000 do
c:=c+sqrt(sqr(0.000000005*a-0.000000005*(a-1))+sqr(sqr(0.000000005*a)-sqr(0.000000005*(a-1))))*sqrt(sqr(0.000000005*a)+sqr(sqr(0.000000005*a)));
writeln(c);
readln;
end.
kuris duoda atsakymą
m
=
327.860389859764
{\displaystyle m=327.860389859764}
po 41 sekundės su 2,6 GHz procesoriumi. Optimizuotas šito kodo variantas yra kodas:
var
a:longint;
c:real;
begin
for a:=1 to 1000000000 do
c:=c+sqrt(sqr(0.000000005)+sqr(sqr(0.000000005*a)-sqr(0.000000005*(a-1))))*sqrt(sqr(0.000000005*a)+sqr(sqr(0.000000005*a)));
writeln(c);
readln;
end
kuris duoda atsakymą
m
=
327.860389859763
{\displaystyle m=327.860389859763}
po 38 sekundžių su 2,6 GHz procesoriumi. Dar labiau optimizuotas šito kodo variantas yra:
var
a:longint;
c:real;
begin
for a:=1 to 1000000000 do
c:=c+sqrt(0.000000000000000025+sqr(sqr(0.000000005*a)-sqr(0.000000005*(a-1))))*sqrt(sqr(0.000000005*a)+sqr(sqr(0.000000005*a)));
writeln(c);
readln;
end.
kuris duoda atsakymą
m
=
327.860389859763
{\displaystyle m=327.860389859763}
po 38 sekundžių su 2,6 GHz procesoriumi (vadinasi, Free Pascal automatiškai optimizuoja kodą pakeldamas konstantą 0,000000005 kvadratu ir visoms iteracijoms naudodamas gautą 0,000000000000000025 reikšmę).
Nustatyti parabolės
y
=
x
2
{\displaystyle y=x^{2}}
masę pirmame ketvirtyje, kai x kinta nuo 0 iki 10. Tiesės tankis
γ
{\displaystyle \gamma }
tolstant tiesės taškams nuo centro (koordinačių pradžios taško O ) didėja proporcingai tik Ox kryptimi, t. y.
γ
=
x
.
{\displaystyle \gamma =x.}
Sprendimas . Greičiausias būdas apskaičiuoti, tai ko reikalauja sąlyga (uždavinys) yra toks:
m
=
∫
0
10
x
d
x
=
x
2
2
|
0
10
=
10
2
2
−
0
2
2
=
50.
{\displaystyle m=\int _{0}^{10}x\;dx={\frac {x^{2}}{2}}|_{0}^{10}={\frac {10^{2}}{2}}-{\frac {0^{2}}{2}}=50.}
Kitas būdas yra toks:
m
=
∫
0
10
γ
1
+
[
y
′
]
2
d
x
=
∫
0
10
x
1
+
(
2
x
)
2
d
x
=
∫
0
10
x
1
+
4
x
2
d
x
=
{\displaystyle m=\int _{0}^{10}\gamma {\sqrt {1+[y']^{2}}}dx=\int _{0}^{10}x{\sqrt {1+(2x)^{2}}}dx=\int _{0}^{10}x{\sqrt {1+4x^{2}}}dx=}
=
∫
0
10
2
x
1
4
+
x
2
d
x
=
2
3
(
x
2
+
1
4
)
3
/
2
|
0
10
=
{\displaystyle =\int _{0}^{10}2x{\sqrt {{\frac {1}{4}}+x^{2}}}dx={\frac {2}{3}}(x^{2}+{\frac {1}{4}})^{3/2}|_{0}^{10}=}
=
2
3
(
10
2
+
1
4
)
3
/
2
−
2
3
(
0
2
+
1
4
)
3
/
2
=
{\displaystyle ={\frac {2}{3}}(10^{2}+{\frac {1}{4}})^{3/2}-{\frac {2}{3}}(0^{2}+{\frac {1}{4}})^{3/2}=}
=
2
3
⋅
100.25
3
/
2
−
2
3
(
1
2
)
3
=
{\displaystyle ={\frac {2}{3}}\cdot 100.25^{3/2}-{\frac {2}{3}}\left({\frac {1}{2}}\right)^{3}=}
=669,16822851623458973388183928978 - (2/3)*(1/8)=
=669,16822851623458973388183928978 - 1/12=
=669,08489518290125640054850595645;
čia pasinaudojome integralų lentele
∫
x
x
2
±
a
2
d
x
=
1
3
(
x
2
±
a
2
)
3
/
2
.
{\displaystyle \int x{\sqrt {x^{2}\pm a^{2}}}dx={\frac {1}{3}}(x^{2}\pm a^{2})^{3/2}.}
Tuo atveju, jeigu x kinta nuo 0 iki 5 tada:
m
=
∫
0
5
γ
1
+
[
y
′
]
2
d
x
=
∫
0
5
x
1
+
4
x
2
d
x
=
2
∫
0
5
x
1
4
+
x
2
d
x
=
{\displaystyle m=\int _{0}^{5}\gamma {\sqrt {1+[y']^{2}}}dx=\int _{0}^{5}x{\sqrt {1+4x^{2}}}dx=2\int _{0}^{5}x{\sqrt {{\frac {1}{4}}+x^{2}}}dx=}
=
2
3
(
5
2
+
1
4
)
3
/
2
−
2
3
(
0
2
+
1
4
)
3
/
2
=
{\displaystyle ={\frac {2}{3}}(5^{2}+{\frac {1}{4}})^{3/2}-{\frac {2}{3}}(0^{2}+{\frac {1}{4}})^{3/2}=}
=
2
3
⋅
25.25
3
/
2
−
2
3
(
1
2
)
3
=
{\displaystyle ={\frac {2}{3}}\cdot 25.25^{3/2}-{\frac {2}{3}}\left({\frac {1}{2}}\right)^{3}=}
=84,586453144434159774345479682393-1/12=
=84,50311981110082644101214634906.
Free Pascal kodas duodą tokį patį rezultatą (kai x kinta nuo 0 iki 5):
var
a:longint;
c:real;
begin
for a:=1 to 1000000000 do
c:=c+sqrt(sqr(0.000000005)+sqr(sqr(0.000000005*a)-sqr(0.000000005*(a-1))))*0.000000005*a;
writeln(c);
readln;
end.
m=84,5031198757743 po 25 sekundžių su 2,6 GHz procesoriumi. Optimizuotas jo variantas:
var
a:longint;
c:real;
begin
for a:=1 to 1000000000 do
c:=c+sqrt(sqr(0.000000005)+sqr(sqr(0.000000005*a)-sqr(0.000000005*(a-1))))*a;
writeln(c*0.000000005);
readln;
end
duoda rezultatą m=84,503119875777473 po 23 sekundžių su 2,6 GHz procesoriumi (daugybos operaciją padaro 2-3 sekundėmis greičiau, tačiau darant vien tik daugybą:
var
a:longint;
c:real;
begin
for a:=1 to 1000000000 do
c:=c+a*1.0*a;
writeln(c);
readln;
end.
gauname rezultatą
3.33333333833246
⋅
10
26
{\displaystyle 3.33333333833246\cdot 10^{26}}
po 4-5 sekundžių su 2,6 GHz procesoriumi; pasirodo viskas logiška 4-5 sekundės yra ~2 kartus ilgiau nei 2-3 sekundės ir ten a*1.0*a yra dvi daugybos, o padauginti iš 1.0 yra būtina, nes kitaip neįmanoma ir net keliant kiekvieną a kvadratu, kaip šiame kode:
var
a:longint;
c:real;
begin
for a:=1 to 1000000000 do
c:=c+sqr(a);
writeln(c);
readln;
end.
gauname rezultatą
−
1.49157006236160
⋅
10
13
{\displaystyle -1.49157006236160\cdot 10^{13}}
po 4-5 sekundžių su 2,6 GHz procesoriumi; kad gauti teisingą rezultatą reikia naudotį tokį kodą:
var
a:longint;
c:real;
begin
for a:=1 to 1000000000 do
c:=c+sqr(1.0*a);
writeln(c);
readln;
end.
duodantį rezultatą
3.33333333833246
⋅
10
26
{\displaystyle 3.33333333833246\cdot 10^{26}}
po 4-5 sekundžių su 2,6 GHz procesoriumi; jei eiltę " c:=c+sqr(1.0*a);" pakeisti eilute "c:=c+a*(a*1.0*a);" arba eilute "c:=c+sqr(a*1.0*a);", tuomet vis tiek gauname rezultatą (
2.50000000499896
⋅
10
35
{\displaystyle 2.50000000499896\cdot 10^{35}}
arba
2.00000000499915
⋅
10
44
{\displaystyle 2.00000000499915\cdot 10^{44}}
atitinkamai) po 4-5 sekundžių su 2,6 GHz procesoriumi; netgi naudojant tokį kodą (kuris pakelia a 17 laipsniu per kiekvieną iteraciją):
var
a:longint;
c:real;
begin
for a:=1 to 1000000000 do
c:=c+a*sqr(sqr(sqr(a*1.0*a)));
writeln(c);
readln;
end.
gauname rezultatą
5.55555560555633
⋅
10
160
{\displaystyle 5.55555560555633\cdot 10^{160}}
po 5 sekundžių (todėl kyla klausimas ar tik ne integralus "Free pascal" naudoja tam tikrais atvejais, nes
∫
1
10
9
x
17
d
x
=
x
18
18
|
1
10
9
=
(
10
9
)
18
18
−
1
18
18
=
10
162
18
−
1
18
=
{\displaystyle \int _{1}^{10^{9}}x^{17}\;dx={\frac {x^{18}}{18}}|_{1}^{10^{9}}={\frac {(10^{9})^{18}}{18}}-{\frac {1^{18}}{18}}={\frac {10^{162}}{18}}-{\frac {1}{18}}=}
=
5.5555555555555555555555555555556
⋅
10
160
−
0.05555555555555555555555555555556
=
5.5555555555555555555555555555556
⋅
10
160
{\displaystyle =5.5555555555555555555555555555556\cdot 10^{160}-0.05555555555555555555555555555556=5.5555555555555555555555555555556\cdot 10^{160}}
) su 2,6 GHz procesoriumi).
Su Gryno formule apskaičiuosime kreivinį integralą
∮
L
(
x
−
y
)
d
x
+
(
x
+
y
)
d
y
,
{\displaystyle \oint _{L}(x-y)dx+(x+y)dy,}
kur L - apskritimas
x
2
+
y
2
=
R
2
.
{\displaystyle x^{2}+y^{2}=R^{2}.}
Funkcijos
P
(
x
,
y
)
=
x
−
y
,
Q
(
x
,
y
)
=
x
+
y
{\displaystyle P(x,y)=x-y,\;Q(x,y)=x+y}
ir
∂
P
∂
y
=
−
1
,
∂
Q
∂
x
=
1
{\displaystyle {\partial P \over \partial y}=-1,\;{\partial Q \over \partial x}=1}
netrūkios uždarame rate
x
2
+
y
2
=
R
2
.
{\displaystyle x^{2}+y^{2}=R^{2}.}
Todėl pagal Gryno teoremą turime (
ρ
2
=
R
2
,
{\displaystyle \rho ^{2}=R^{2},}
ρ
=
R
{\displaystyle \rho =R}
):
∮
L
(
x
−
y
)
d
x
+
(
x
+
y
)
d
y
=
∬
D
[
1
−
(
−
1
)
]
d
x
d
y
=
2
∬
D
d
x
d
y
=
2
s
=
2
∫
0
2
π
d
ϕ
∫
0
R
ρ
d
ρ
=
{\displaystyle \oint _{L}(x-y)dx+(x+y)dy=\iint _{D}[1-(-1)]dxdy=2\iint _{D}dxdy=2s=2\int _{0}^{2\pi }d\phi \int _{0}^{R}\rho d\rho =}
=
∫
0
2
π
ρ
2
|
0
R
d
ϕ
=
R
2
∫
0
2
π
d
ϕ
=
R
2
ϕ
|
0
2
π
=
2
π
R
2
.
{\displaystyle =\int _{0}^{2\pi }\rho ^{2}|_{0}^{R}d\phi =R^{2}\int _{0}^{2\pi }d\phi =R^{2}\phi |_{0}^{2\pi }=2\pi R^{2}.}
Patikrinimas . Iš apskritimo lygties
x
2
+
y
2
=
R
2
{\displaystyle x^{2}+y^{2}=R^{2}}
gauname:
y
=
R
2
−
x
2
,
{\displaystyle y={\sqrt {R^{2}-x^{2}}},}
x
=
R
2
−
y
2
.
{\displaystyle x={\sqrt {R^{2}-y^{2}}}.}
Todėl
P
(
x
,
y
)
=
x
−
y
=
x
−
R
2
−
x
2
,
{\displaystyle P(x,y)=x-y=x-{\sqrt {R^{2}-x^{2}}},}
Q
(
x
,
y
)
=
x
+
y
=
R
2
−
y
2
+
y
.
{\displaystyle Q(x,y)=x+y={\sqrt {R^{2}-y^{2}}}+y.}
Pasinaudodami internetiniu integratoriumi, gauname , kad
∮
L
(
x
−
y
)
d
x
+
(
x
+
y
)
d
y
=
∫
0
R
(
x
−
R
2
−
x
2
)
d
x
+
∫
0
R
(
R
2
−
y
2
+
y
)
d
y
=
{\displaystyle \oint _{L}(x-y)dx+(x+y)dy=\int _{0}^{R}(x-{\sqrt {R^{2}-x^{2}}})dx+\int _{0}^{R}({\sqrt {R^{2}-y^{2}}}+y)dy=}
(
−
1
2
x
R
2
−
x
2
+
1
2
R
2
arctan
x
R
2
−
x
2
x
2
−
R
2
+
x
2
2
)
|
0
R
+
1
2
(
y
(
R
2
−
y
2
+
y
)
+
R
2
arctan
y
R
2
−
y
2
)
|
0
R
=
{\displaystyle \left(-{\frac {1}{2}}x{\sqrt {R^{2}-x^{2}}}+{\frac {1}{2}}R^{2}\arctan {\frac {x{\sqrt {R^{2}-x^{2}}}}{x^{2}-R^{2}}}+{\frac {x^{2}}{2}}\right)|_{0}^{R}+{\frac {1}{2}}\left(y({\sqrt {R^{2}-y^{2}}}+y)+R^{2}\arctan {\frac {y}{R^{2}-y^{2}}}\right)|_{0}^{R}=}
(
−
1
2
R
R
2
−
R
2
+
1
2
R
2
arctan
R
R
2
−
R
2
R
2
−
R
2
+
R
2
2
)
+
1
2
(
R
(
R
2
−
R
2
+
R
)
+
R
2
arctan
R
R
2
−
R
2
)
=
{\displaystyle \left(-{\frac {1}{2}}R{\sqrt {R^{2}-R^{2}}}+{\frac {1}{2}}R^{2}\arctan {\frac {R{\sqrt {R^{2}-R^{2}}}}{R^{2}-R^{2}}}+{\frac {R^{2}}{2}}\right)+{\frac {1}{2}}\left(R({\sqrt {R^{2}-R^{2}}}+R)+R^{2}\arctan {\frac {R}{R^{2}-R^{2}}}\right)=}
(
1
2
R
2
arctan
(
∞
)
+
R
2
2
)
+
1
2
(
R
(
0
+
R
)
+
R
2
arctan
(
∞
)
)
=
{\displaystyle \left({\frac {1}{2}}R^{2}\arctan(\infty )+{\frac {R^{2}}{2}}\right)+{\frac {1}{2}}\left(R(0+R)+R^{2}\arctan(\infty )\right)=}
(
1
2
R
2
π
+
R
2
2
)
+
1
2
(
R
2
+
R
2
π
)
=
{\displaystyle \left({\frac {1}{2}}R^{2}\pi +{\frac {R^{2}}{2}}\right)+{\frac {1}{2}}\left(R^{2}+R^{2}\pi \right)=}
R
2
π
+
R
2
=
R
2
(
π
+
1
)
.
{\displaystyle R^{2}\pi +R^{2}=R^{2}(\pi +1).}
Riba
lim
x
→
R
arctan
x
R
2
−
x
2
x
2
−
R
2
=
lim
x
→
R
arctan
x
x
2
−
R
2
=
lim
z
→
0
arctan
R
z
=
arctan
(
∞
)
=
π
.
{\displaystyle \lim _{x\to R}\arctan {\frac {x{\sqrt {R^{2}-x^{2}}}}{x^{2}-R^{2}}}=\lim _{x\to R}\arctan {\frac {x}{\sqrt {x^{2}-R^{2}}}}=\lim _{z\to 0}\arctan {\frac {R}{z}}=\arctan(\infty )=\pi .}
Beje,
arctan
(
0
)
=
0.
{\displaystyle \arctan(0)=0.}
Atsakymą
R
2
(
π
+
1
)
{\displaystyle R^{2}(\pi +1)}
reikia padauginti iš 2, kad gauti nuo -R iki +R integravimą. Todėl galutinis atsakymas turi būti
2
R
2
(
π
+
1
)
,
{\displaystyle 2R^{2}(\pi +1),}
kas beveik atitinka tikrąjį atsakymą
2
π
R
2
,
{\displaystyle 2\pi R^{2},}
kai R yra didelis.
Patikrinimas nesuveikė.
Su Gryno formule apskaičiuosime kreivinį integralą
∮
L
(
x
−
y
)
d
x
+
(
x
+
y
)
d
y
,
{\displaystyle \oint _{L}(x-y)dx+(x+y)dy,}
kur L - apskritimas
x
2
+
y
2
=
R
2
.
{\displaystyle x^{2}+y^{2}=R^{2}.}
Funkcijos
P
(
x
,
y
)
=
x
−
y
,
Q
(
x
,
y
)
=
x
+
y
{\displaystyle P(x,y)=x-y,\;Q(x,y)=x+y}
ir
∂
P
∂
y
=
−
1
,
∂
Q
∂
x
=
1
{\displaystyle {\partial P \over \partial y}=-1,\;{\partial Q \over \partial x}=1}
netrūkios uždarame rate
x
2
+
y
2
=
R
2
.
{\displaystyle x^{2}+y^{2}=R^{2}.}
Todėl pagal Gryno teoremą turime (
ρ
2
=
R
2
,
{\displaystyle \rho ^{2}=R^{2},}
ρ
=
R
{\displaystyle \rho =R}
):
∮
L
(
x
−
y
)
d
x
+
(
x
+
y
)
d
y
=
∬
D
[
1
−
(
−
1
)
]
d
x
d
y
=
2
∬
D
d
x
d
y
=
2
s
=
2
∫
0
2
π
d
ϕ
∫
0
R
ρ
d
ρ
=
{\displaystyle \oint _{L}(x-y)dx+(x+y)dy=\iint _{D}[1-(-1)]dxdy=2\iint _{D}dxdy=2s=2\int _{0}^{2\pi }d\phi \int _{0}^{R}\rho d\rho =}
=
∫
0
2
π
ρ
2
|
0
R
d
ϕ
=
R
2
∫
0
2
π
d
ϕ
=
R
2
ϕ
|
0
2
π
=
2
π
R
2
.
{\displaystyle =\int _{0}^{2\pi }\rho ^{2}|_{0}^{R}d\phi =R^{2}\int _{0}^{2\pi }d\phi =R^{2}\phi |_{0}^{2\pi }=2\pi R^{2}.}
Patikrinimas . Iš apskritimo lygties
x
2
+
y
2
=
R
2
{\displaystyle x^{2}+y^{2}=R^{2}}
gauname:
y
=
R
2
−
x
2
,
{\displaystyle y={\sqrt {R^{2}-x^{2}}},}
x
=
R
2
−
y
2
.
{\displaystyle x={\sqrt {R^{2}-y^{2}}}.}
Todėl
P
(
x
,
y
)
=
x
−
y
=
x
−
R
2
−
x
2
,
{\displaystyle P(x,y)=x-y=x-{\sqrt {R^{2}-x^{2}}},}
Q
(
x
,
y
)
=
x
+
y
=
R
2
−
y
2
+
y
.
{\displaystyle Q(x,y)=x+y={\sqrt {R^{2}-y^{2}}}+y.}
Pasinaudodami internetiniu integratoriumi, gauname , kad
∮
L
(
x
−
y
)
d
x
+
(
x
+
y
)
d
y
=
∫
−
R
R
(
x
−
R
2
−
x
2
)
d
x
+
∫
−
R
R
(
R
2
−
y
2
+
y
)
d
y
=
{\displaystyle \oint _{L}(x-y)dx+(x+y)dy=\int _{-R}^{R}(x-{\sqrt {R^{2}-x^{2}}})dx+\int _{-R}^{R}({\sqrt {R^{2}-y^{2}}}+y)dy=}
(
−
1
2
x
R
2
−
x
2
+
1
2
R
2
arctan
x
R
2
−
x
2
x
2
−
R
2
+
x
2
2
)
|
−
R
R
+
1
2
(
y
(
R
2
−
y
2
+
y
)
+
R
2
arctan
y
R
2
−
y
2
)
|
−
R
R
=
{\displaystyle \left(-{\frac {1}{2}}x{\sqrt {R^{2}-x^{2}}}+{\frac {1}{2}}R^{2}\arctan {\frac {x{\sqrt {R^{2}-x^{2}}}}{x^{2}-R^{2}}}+{\frac {x^{2}}{2}}\right)|_{-R}^{R}+{\frac {1}{2}}\left(y({\sqrt {R^{2}-y^{2}}}+y)+R^{2}\arctan {\frac {y}{R^{2}-y^{2}}}\right)|_{-R}^{R}=}
(
−
1
2
R
R
2
−
R
2
+
1
2
R
2
arctan
R
R
2
−
R
2
R
2
−
R
2
+
R
2
2
)
−
(
−
1
2
(
−
R
)
R
2
−
(
−
R
)
2
+
1
2
R
2
arctan
−
R
R
2
−
(
−
R
)
2
(
−
R
)
2
−
R
2
+
(
−
R
)
2
2
)
+
{\displaystyle \left(-{\frac {1}{2}}R{\sqrt {R^{2}-R^{2}}}+{\frac {1}{2}}R^{2}\arctan {\frac {R{\sqrt {R^{2}-R^{2}}}}{R^{2}-R^{2}}}+{\frac {R^{2}}{2}}\right)-\left(-{\frac {1}{2}}(-R){\sqrt {R^{2}-(-R)^{2}}}+{\frac {1}{2}}R^{2}\arctan {\frac {-R{\sqrt {R^{2}-(-R)^{2}}}}{(-R)^{2}-R^{2}}}+{\frac {(-R)^{2}}{2}}\right)+}
+
1
2
(
R
(
R
2
−
R
2
+
R
)
+
R
2
arctan
R
R
2
−
R
2
)
−
1
2
(
−
R
(
R
2
−
(
−
R
)
2
−
R
)
+
R
2
arctan
−
R
R
2
−
(
−
R
)
2
)
=
{\displaystyle +{\frac {1}{2}}\left(R({\sqrt {R^{2}-R^{2}}}+R)+R^{2}\arctan {\frac {R}{R^{2}-R^{2}}}\right)-{\frac {1}{2}}\left(-R({\sqrt {R^{2}-(-R)^{2}}}-R)+R^{2}\arctan {\frac {-R}{R^{2}-(-R)^{2}}}\right)=}
(
1
2
R
2
arctan
(
∞
)
+
R
2
2
)
−
(
1
2
R
2
arctan
(
−
∞
)
+
R
2
2
)
+
{\displaystyle \left({\frac {1}{2}}R^{2}\arctan(\infty )+{\frac {R^{2}}{2}}\right)-\left({\frac {1}{2}}R^{2}\arctan(-\infty )+{\frac {R^{2}}{2}}\right)+}
+
1
2
(
R
(
0
+
R
)
+
R
2
arctan
(
∞
)
)
−
1
2
(
−
R
(
0
−
R
)
+
R
2
arctan
(
−
∞
)
)
=
{\displaystyle +{\frac {1}{2}}\left(R(0+R)+R^{2}\arctan(\infty )\right)-{\frac {1}{2}}\left(-R(0-R)+R^{2}\arctan(-\infty )\right)=}
=
(
1
2
R
2
π
+
R
2
2
)
−
(
1
2
R
2
(
−
π
)
+
R
2
2
)
+
{\displaystyle =\left({\frac {1}{2}}R^{2}\pi +{\frac {R^{2}}{2}}\right)-\left({\frac {1}{2}}R^{2}(-\pi )+{\frac {R^{2}}{2}}\right)+}
+
1
2
(
R
2
+
R
2
π
)
−
1
2
(
R
2
+
R
2
(
−
π
)
)
=
{\displaystyle +{\frac {1}{2}}\left(R^{2}+R^{2}\pi \right)-{\frac {1}{2}}\left(R^{2}+R^{2}(-\pi )\right)=}
=
R
2
π
+
R
2
π
=
2
π
R
2
.
{\displaystyle =R^{2}\pi +R^{2}\pi =2\pi R^{2}.}
Riba
lim
x
→
R
arctan
x
R
2
−
x
2
x
2
−
R
2
=
lim
x
→
R
arctan
x
x
2
−
R
2
=
lim
z
→
0
arctan
R
z
=
arctan
(
∞
)
=
π
.
{\displaystyle \lim _{x\to R}\arctan {\frac {x{\sqrt {R^{2}-x^{2}}}}{x^{2}-R^{2}}}=\lim _{x\to R}\arctan {\frac {x}{\sqrt {x^{2}-R^{2}}}}=\lim _{z\to 0}\arctan {\frac {R}{z}}=\arctan(\infty )=\pi .}
Beje,
arctan
(
0
)
=
0
,
arctan
(
−
∞
)
=
−
π
.
{\displaystyle \arctan(0)=0,\;\arctan(-\infty )=-\pi .}