Tiesioginis integravimas
keisti
Trigonometrinių funkcijų integravimas taikant dvigubą faktorialą
keisti
Panaudojant integravimo dalimis metodą, įrodyta, kad
∫
0
π
2
sin
n
x
d
x
=
∫
0
π
2
cos
n
x
d
x
=
(
n
−
1
)
!
!
n
!
!
⋅
π
2
,
{\displaystyle \int _{0}^{\pi \over 2}\sin ^{n}x\;dx=\int _{0}^{\pi \over 2}\cos ^{n}x\;dx={(n-1)!! \over n!!}\cdot {\pi \over 2},}
kai n lyginis;
∫
0
π
2
sin
n
x
d
x
=
∫
0
π
2
cos
n
x
d
x
=
(
n
−
1
)
!
!
n
!
!
,
{\displaystyle \int _{0}^{\pi \over 2}\sin ^{n}x\;dx=\int _{0}^{\pi \over 2}\cos ^{n}x\;dx={(n-1)!! \over n!!},}
kai n nelyginis.
Du šauktukai (n!!) yra dvigubas faktorialas. Šiuo simboliu pažymėsime vien tik lyginių skaičių iki n sandaugą, jei n - lyginis, ir vien tik nelyginių skaičių sandaugą, jei n nelyginis. Pavyzdžiui:
5
!
!
=
1
⋅
3
⋅
5
=
15
,
6
!
!
=
2
⋅
4
⋅
6
=
48.
{\displaystyle 5!!=1\cdot 3\cdot 5=15,\;6!!=2\cdot 4\cdot 6=48.}
Pavyzdžiai
∫
0
π
sin
8
x
2
d
x
=
2
∫
0
π
2
sin
8
t
d
t
=
2
⋅
7
!
!
8
!
!
⋅
π
2
=
2
⋅
7
⋅
5
⋅
3
8
⋅
6
⋅
4
⋅
2
⋅
π
2
=
35
π
128
,
{\displaystyle \int _{0}^{\pi }\sin ^{8}{x \over 2}dx=2\int _{0}^{\pi \over 2}\sin ^{8}t\;dt=2\cdot {7!! \over 8!!}\cdot {\pi \over 2}=2\cdot {7\cdot 5\cdot 3 \over 8\cdot 6\cdot 4\cdot 2}\cdot {\pi \over 2}={35\pi \over 128},}
kur
x
2
=
t
;
d
t
=
1
2
d
x
;
{\displaystyle {x \over 2}=t;\;dt={1 \over 2}dx;}
d
x
=
2
d
t
.
{\displaystyle dx=2dt.}
4
∫
0
π
2
(
cos
2
x
−
2
3
cos
4
x
)
d
x
=
4
(
1
!
!
2
!
!
⋅
π
2
−
2
3
⋅
3
!
!
4
!
!
⋅
π
2
)
=
4
(
π
4
−
π
3
⋅
3
4
⋅
2
)
=
4
(
π
4
−
π
8
)
=
4
⋅
π
8
=
π
2
.
{\displaystyle 4\int _{0}^{\pi \over 2}(\cos ^{2}x-{2 \over 3}\cos ^{4}x)dx=4({1!! \over 2!!}\cdot {\pi \over 2}-{2 \over 3}\cdot {3!! \over 4!!}\cdot {\pi \over 2})=4({\pi \over 4}-{\pi \over 3}\cdot {3 \over 4\cdot 2})=4({\pi \over 4}-{\pi \over 8})=4\cdot {\pi \over 8}={\pi \over 2}.}
∫
0
π
2
sin
3
x
d
x
=
(
3
−
1
)
!
!
3
!
!
=
2
!
!
3
!
!
=
2
3
.
{\displaystyle \int _{0}^{\pi \over 2}\sin ^{3}x\;dx={(3-1)!! \over 3!!}={2!! \over 3!!}={2 \over 3}.}
∫
0
π
sin
4
x
d
x
=
2
∫
0
π
2
sin
4
x
d
x
=
2
⋅
3
!
!
4
!
!
⋅
π
2
=
3
4
⋅
2
π
=
3
8
π
.
{\displaystyle \int _{0}^{\pi }\sin ^{4}x\;dx=2\int _{0}^{\pi \over 2}\sin ^{4}x\;dx=2\cdot {3!! \over 4!!}\cdot {\pi \over 2}={3 \over 4\cdot 2}\pi ={3 \over 8}\pi .}
∫
−
π
2
π
2
cos
4
x
d
x
=
2
∫
0
π
2
cos
4
x
d
x
=
2
⋅
3
!
!
4
!
!
⋅
π
2
=
3
8
π
.
{\displaystyle \int _{-{\pi \over 2}}^{\pi \over 2}\cos ^{4}xdx=2\int _{0}^{\pi \over 2}\cos ^{4}xdx=2\cdot {3!! \over 4!!}\cdot {\pi \over 2}={3 \over 8}\pi .}