Matematika/Trapecijos: Skirtumas tarp puslapio versijų

204 pridėti baitai ,  prieš 9 metus
:<math>S=\frac{a+b}{2}\sqrt{c^2-\left(\frac{(b-a)^2+c^2-d^2}{2(b-a)}\right)^2}.</math>
 
:'''Pavyzdis'''. Lygiašonės trapecijos pagrindai yra a=7, b=13, c=d=5, trapecijos aukštinė h=4. Atkarpos, kurios nukerta aukšinė ilgis yra x=3. Tada trapecijos plotas yra <math> S=a\cdot h+x\cdot h=h(a+x)=4(7+3)=40</math> arba <math>S= \frac{(a+b)h}{2}=\frac{4(7+13)}{2}=40.</math> Tą patį plotą gausime ir pagal formulę:
:<math>S=\frac{a+b}{2}\sqrt{c^2-\left(\frac{(b-a)^2+c^2-d^2}{2(b-a)}\right)^2}=\frac{7+13}{2}\sqrt{5^2-\left(\frac{(13-7)^2+5^2-5^2}{2(13-7)}\right)^2}.</math>
 
*Plotas lygiabriaunės trapecijos su spinduliu įbrėžto apskritimo lygiu <math>r</math> ir kampu prie pagrindo <math>\alpha</math> yra:
5 067

pakeitimai