Matematika/Liestinės ir normalės projekcijos (keisti)
10:43, 16 rugpjūčio 2011 versija
, prieš 12 metų→Pavyzdžiai
:taške <math>M(x_1; \; y_1),</math> kuriai <math>t=\frac{\pi}{4}.</math>
:''Sprendimas''. Iš lygčių (1) randame:
:<math>\frac{dx}{dt}=-a\sin t; \;\; \frac{dy}{dt}=b\cos t; \;\;
:Randame koordinates susilietimo taško ''M'':
:<math>x_1=(x)_{t=\frac{\pi}{4}}=a\cos \frac{\pi}{4}=\frac{a}{\sqrt{2}}, \quad y_1=(y)_{t=\frac{\pi}{4}}=b\sin \frac{\pi}{4}=\frac{a}{\sqrt{2}}.</math>
:Ilgis subtangentės:
:<math>S_T=\left|\frac{y_1}{k}\right|=\left|\frac{\frac{b}{\sqrt{2}}}{-\frac{b}{a}}\right|=\frac{a}{\sqrt{2}}.</math>
:Ilgis subnormalės:
:<math>S_N=y_1 k=\left|\frac{b}{\sqrt{2}}\left(-\frac{b}{a}\right)\right|=\frac{b^2}{a\sqrt{2}.</math>
|