Matematika/Sinuso Integralas: Skirtumas tarp puslapio versijų

:<math>G'(x)=-\int_0^\infty e^{-xt} \sin t \; \mathbf{d}t, \quad x>0.</math>
:Toliau integruodami nuo ''t'', gauname
:<math>G'(x)=-\int_0^\infty e^{-xt} \sin t \; \mathbf{d}t=-\frac{e^{-xt}(x\sin(t)+\cos(t))}{x^2+1}|_0^\infty;=</math>
:<math>=-\frac{e^{-x\cdot\infty}(x\sin(\infty)+\cos(\infty))}{x^2+1} -(-\frac{e^{-x\cdot 0}(x\sin(0)+\cos(0))}{x^2+1})=</math>
 
==Nuorodos==
5 067

pakeitimai