Gravitacija yra kūno masės m kritimas žemyn iš auksčio h. Pasiekęs žemę kūnas turi greitį v. Gravitacijos pagreitis g visose planetose skirtingas. Planetoje Žemė laisvojo kritimo pagreitis . Užrašas g=10 (m/s)/s reiškia, kad kūnas per vieną sekundę išsibegėja iki greičio m/s. Per dvi sekundes kūnas išsibegėja iki greičio Pagreitis gali būti ir automobilio, tik skirtumas tas, kad horizantalia plokštuma judančių objektų pagreitis žymimas raide a. O horizonataliu paviršiumi nukaktas kelias žymimas S raide.

Gravitacijos formulės

keisti
Greičio formulės:
 
 
 
Kelio arba, kitaip sakant, atstumo, kuri nukris daiktas, formulės:
 
čia v yra galutinis greitis, pasiektas prisilietus prie žemės, t yra laikas (po kurio prilietė žemę);
 
 
čia a ir g yra tas pats pagreitis. Raide h žymimas aukštis iš kurio buvo mestas kūnas, o raide S žymimas nukaktas kelias.
Laiko po kurio nukris kūnas formulės:
 
 
Pagreičio formulės:
 
 
 
Kitos formulės:
 
 
 

Pavyzdžiai

keisti
  • Pagreitis g=10 (m/s)/s. Laikas t=10 s. Rasime atstumą, kurį nukris akmuo per 10 sekundžių. Ir rasime greitį, kurį pasieks akmuo. Oro pasipriešinimas nepaisomas.
 
 
  • Pagreitis g=10 (m/s)/s. Laikas t=5 s. Rasime atstumą, kurį nukris akmuo per 5 sekundžių. Ir rasime greitį, kurį pasieks akmuo. Oro pasipriešinimas nepaisomas.
 
 
  • Pagreitis g=10 (m/s)/s. Laikas t=3 s. Rasime atstumą, kurį nukris akmuo per 3 sekundžių. Ir rasime greitį, kurį pasieks akmuo. Oro pasipriešinimas nepaisomas.
 
 
  • Pagreitis g=10 (m/s)/s. Laikas t=2 s. Rasime atstumą, kurį nukris akmuo per 2 sekundžių. Ir rasime greitį, kurį pasieks akmuo. Oro pasipriešinimas nepaisomas.
 
 
  • Pagreitis g=10 (m/s)/s. Laikas t=1 s. Rasime atstumą, kurį nukris akmuo ir rasime greitį, kurį pasieks akmuo. Oro pasipriešinimas nepaisomas.
 
 
  • Pagreitis g=10 (m/s)/s. Laikas t=76 s. Rasime atstumą, kurį nukris akmuo per 76 sekundes. Ir rasime greitį, kurį pasieks akmuo. Oro pasipriešinimas nepaisomas.
 
 


  • Kokį atstumą nukris 1 kg kūnas ir kokį galutinį greitį pasieks po laiko t, kai
a)  
b)  
c)  ?
Oro pasipriešinimo nepaisyti.
Sprendimas.
a)  
 
b)  
 
c)  
 

Sunkesni pavyzdžiai

keisti
  • Laisvojo kritimo pagreitis g=10 (m/s)/s. Aukštis iš kurio paleistas akmuo yra h=100 metrų. Rasime akmens galutinį greitį ir laiką, per kurį akmuo pasieks žemę. Oro pasipriešinimas nepaisomas.
 
 
arba
 
  • Laisvojo kritimo pagreitis g=10 (m/s)/s. Aukštis iš kurio paleistas akmuo yra h=50 metrų. Rasime akmens galutinį greitį ir laiką, per kurį akmuo pasieks žemę. Oro pasipriešinimas nepaisomas.
  sekundės.
  (m/s).
  • Laisvojo kritimo pagreitis g=10 (m/s)/s. Aukštis iš kurio paleistas akmuo yra h=500 metrų. Rasime akmens galutinį greitį ir laiką, per kurį akmuo pasieks žemę. Oro pasipriešinimas nepaisomas.
  sekundžių.
  (m/s).
  • Laisvojo kritimo pagreitis g=10 (m/s)/s. Aukštis iš kurio paleistas akmuo yra h=1 metras. Rasime akmens galutinį greitį ir laiką, per kurį akmuo pasieks žemę. Oro pasipriešinimas nepaisomas.
  sekundės.
  (m/s).
  • Laisvojo kritimo pagreitis g=10 (m/s)/s. Aukštis iš kurio paleistas akmuo yra h=1/2 metro. Rasime akmens galutinį greitį ir laiką, per kurį akmuo pasieks žemę. Oro pasipriešinimas nepaisomas.
  sekundės.
  (m/s).
  • Laisvojo kritimo pagreitis g=10 (m/s)/s. Laikas, kada krito akmuo yra t=6 s. Rasime krentančio akmens vidutinį greitį per kiekvieną atskirą sekundę. Ir rasime atstumą kurį nukris akmuo per 6 sekundes.
Sprendimas. Per pirmą sekundę vidutinis greitis yra lygus   Vadinasi nukris 5 metrus per pirmą sekundę. Čia   yra greitis laiko momentu t=0 s. O   yra greitis laiko momentu t=1 s. Analogiškai,   yra greitis, laiko momentu t=2 s. O   yra greitis, laiko momentu t=3 sekundės ir taip toliau.
 
 
 
 
 
Atstumas, kurį nukris akmuo per 6 sekundes yra:
  metrų.
 


  • Akmuo mestas vertikaliai į dangų nuo pat žemės (iš griovio) greičiu v=17 m/s. Pagreitis g=9,8 (m/s)/s. Rasime didžiausią aukštį, kurį pasieks akmuo. Oro pasipriešinimas nepaisomas.
Sprendimas. Reikia surasti iš kokio aukščio akmuo nukristų ant žemės, kai butų pasiektas greitis 17 m/s. Tokiame aukštyje akmuo ir sustos ir tai bus jo maksimalus pakilimo aukštis.
  s.
  m, arba
 
Vadinasi akmuo pasieks didžiausią pakilimo tašką virš žemės 14,74489796 metrų aukštyje.


  • Akmuo mestas   laipsnių kampu v=17 m/s greičiu iš aukščio 0 metrų. Laisvojo kritimo pagreitis yra 9,8  . Rasime atstumą (tiesės ilgį), kuris buvo numestas nuo metimo taško iki akmens nukritimo taško. Oro pasipriešinimas netaikomas.
Sprendimas. Iš pradžiu reikia rasti akmens šešėlio greitį (akmens greitį judant vien horizontaliai arba kitaip sakant horizontalios projekcijos greitį) iki to kai akmuo pakils į aukščiausią tašką. Horizontalios projekcijos greitis yra randamas pagal formulę:
 
Akmuo kils į viršu pradiniu greičiu (vertikali greičio projekcija):
 
Akmens vidutinis kilimo greitis yra:
 
Akmuo pasieks maksimalų aukštį per laiką:
 
Akmuo prasilaikys ore du kartus tiek (akmuo nukris po tokio pat laiko kaip ir pakilo), tai iš viso akmuo prabus ore laiko:
 
Kadangi mes žinome skridimo horizontaliai greitį   tai galime rasti kelią, kurį nuskris akmuo (kelią kurį nuskris akmens šešėlis, patikslinimui):
 
Maksimalus aukštis į kurį pakils akmuo yra:
 


  • Akmuo mestas   laipsnių kampu v=34 m/s greičiu iš aukščio 0 metrų. Laisvojo kritimo pagreitis yra 9,8  . Rasime atstumą (tiesės ilgį), kuris buvo numestas nuo metimo taško iki akmens nukritimo taško. Oro pasipriešinimas netaikomas.
Sprendimas. Iš pradžiu reikia rasti akmens šešėlio greitį (akmens greitį judant vien horizontaliai arba kitaip sakant horizontalios projekcijos greitį) iki to kai akmuo pakils į aukščiausią tašką. Horizontalios projekcijos greitis yra randamas pagal formulę:
 
Akmens pradinis kilimo į viršų greitis:
 
Akmens vidutinis kilimo į viršų greitis:
 
Akmuo pasieks maksimalų aukštį per laiką:
 
Akmuo prasilaikys ore du kartus tiek (akmuo nukris po tokio pat laiko kaip ir pakilo), tai iš viso akmuo prabus ore laiko:
 
Kadangi mes žinome skridimo horizontaliai greitį   tai galime rasti kelią, kurį nuskris akmuo (kelią kurį nuskris akmens šešėlis, patikslinimui):
 
Maksimalus aukštis į kurį pakils akmuo yra:
 


  • Akmuo mestas   laipsnių kampu v=34 m/s greičiu iš aukščio 0 metrų. Laisvojo kritimo pagreitis yra 9,8  . Rasime atstumą (tiesės ilgį), kuris buvo numestas nuo metimo taško iki akmens nukritimo taško. Oro pasipriešinimas nepaisomas.
Sprendimas. Iš pradžiu reikia rasti akmens šešėlio greitį (akmens greitį judant vien horizontaliai arba kitaip sakant horizontalios projekcijos greitį) iki to kai akmuo pakils į aukščiausią tašką. Horizontalios projekcijos greitis yra randamas pagal formulę:
 
Akmuo kils į viršu pradiniu greičiu (vertikali greičio projekcija):
 
Akmens vidutinis kilimo greitis:
 
Akmuo pasieks maksimalų aukštį per laiką:
 
Akmuo prasilaikys ore du kartus tiek (akmuo nukris po tokio pat laiko kaip ir pakilo), tai iš viso akmuo prabus ore laiko:
 
Kadangi mes žinome skridimo horizontaliai greitį   tai galime rasti kelią, kurį nuskris akmuo (kelią kurį nuskris akmens šešėlis, patikslinimui):
 
Maksimalus aukštis į kurį pakils akmuo yra:
 


  • Akmuo mestas   laipsnių kampu v=34 m/s greičiu iš aukščio 0 metrų. Laisvojo kritimo pagreitis yra 9,8  . Rasime atstumą (tiesės ilgį), kuris buvo numestas nuo metimo taško iki akmens nukritimo taško. Oro pasipriešinimas nepaisomas.
Sprendimas. Iš pradžiu reikia rasti akmens šešėlio greitį (akmens greitį judant vien horizontaliai arba kitaip sakant horizontalios projekcijos greitį) iki to kai akmuo pakils į aukščiausią tašką. Horizontalios projekcijos greitis yra randamas pagal formulę:
 
Akmens pradinis kilimo į viršų greitis:
 
Akmens vidutinis kilimo į viršų greitis:
 
Akmuo pasieks maksimalų aukštį per laiką:
 
Akmuo prasilaikys ore du kartus tiek (akmuo nukris po tokio pat laiko kaip ir pakilo), tai iš viso akmuo prabus ore laiko:
 
Kadangi mes žinome skridimo horizontaliai greitį   tai galime rasti kelią, kurį nuskris akmuo (kelią kurį nuskris akmens šešėlis, patikslinimui):
 
Maksimalus aukštis į kurį pakils akmuo yra:
 


Formulė numestam atstumui nustatyti, metus bet kokiu kampu su horizontu

keisti
Atstumas R numesto akmens iš 0 metrų aukščio su pradiniu metimo greičiu   ir kampu   su horizontu, kai oro pasipriešinimas nepaisomas, randamas pagal formulę
 
(g - laisvojo kritimo pagreitis).


Pavyzdžiai

keisti
  • Akmuo metamas pradiniu greičiu   m/s, kampu   su horizontu. Rasime atstumą R kurį nuskris akmuo (rasime trumpiausią atstuma nuo metimo taško iki nukritimo taško):
 
Patikrinsime šį atsakymą, naudodamiesi metodu iš "Sunkesni pavyzdžiai".
Horizontalios projekcijos greitis yra randamas pagal formulę:
 
Akmuo kils į viršu pradiniu greičiu (vertikali greičio projekcija):
 
Akmens vidutinis kilimo greitis yra:
 
Akmuo pasieks maksimalų aukštį per laiką:
 
Akmuo prasilaikys ore du kartus tiek (akmuo nukris po tokio pat laiko kaip ir pakilo), tai iš viso akmuo prabus ore laiko:
 
Kadangi mes žinome skridimo horizontaliai greitį   tai galime rasti kelią, kurį nuskris akmuo (kelią kurį nuskris akmens šešėlis, patikslinimui):
 
Maksimalus aukštis į kurį pakils akmuo yra:
 


Naudodamiesi trigonometrine formule   ir numesto atstumo apskaičiavimo metodu iš skyriaus "Sunkesni pavyzdžiai", išvesime formulę  .
Numestas atstumas lygus:
 
Kilimo laikas lygus:
 
Įstatę   į pirmą formulę, turime:
 
Formulė įrodyta.


Išvesime trumpą formulę nustatymui maksimalaus aukščio h į kuri pakils akmuo, mestas bet kokiu kampu   su horizontu.
 


  • Akmuo mestas   laipsniu kampu su horizontu, pradiniu greičiu   m/s. Rasti atstumą R, kuri nuskris akmuo ir maksimalų aukšti h, į kurį pakils akmuo. Oro pasipriešinimo nepaisyti.
Sprendimas.
 
Arba
 
 


  • Virgilijus Alekna, kurio ūgis 2,02 metro, numeta 2 kilogramų metalinį diską 70 metrų mesdamas diską 45 laispnių kampu su horizontu (nes tokiu kampu diskas nuskrieja toliausiai, jei nepaisyti oro pasipriešinimo).
Rasti pradinį metimo greitį  , kuriuo skrieja diskas. Rasti didžiausią aukštį H=h+2,02 į kurį pakyla diskas.
Sprendimas. Manysime, kad oro pasipriešinimą kompensuoja tai, kad diskas metamas iš apytiksliai 2 metrų aukščio (nors tokiam sunkiam ir tankiam diskui oro pasipriešinimas beveik nieko nereiškia, bet Virgilijus Alekna vieną kartą Lietuvoje buvo numetęs 73,88 metro; kita vertus metus iš dviems metrams aukštesnio taško diskas nuskris tik gal vienu metru toliau).
 
 
 
 
 
  (m/s).
Rasime į kokį aukštį pakils diskas (jei būtų mestas iš 0 metrų aukščio):
 
Dėl to, kad diskas metamas iš apytiksliai 2 metrų aukščio, diskas pakyls apytiksliai 2 metrais aukščiaus, bet dėl oro pasipriešinimo pakils 0,5 metro žemiau, todėl realus aukštis į kurį pakils diskas yra
  (metrų).
Pastebėsime, kad jeigu metimo kampas   su horizontu lygus 45 laipsniams, tai
 
Virgilijaus Aleknos nusviestas 70 metrų diskas ore prasilaikė
 


  • Metalinis 2 kg diskas metamas tuštumoje (kai nėra oro pasipriešinimo) iš   metrų aukščio,   laipsnių kampu su horiznotu,   (m/s) greičiu. Žinoma, kad diskas pakyla į   metrų aukštį ir nuo metimo aukščio   iki nusileidimo iki aukščio   metrų nuskrieja   metrų.
Rasti laiką  , kurį diskas iš viso prabuvo ore ir rasti atstumą  , kurį diskas nuskriejo nuo metimo taško iš 2 metrų aukščio iki nukritimo ant žemės taško.
Sprendimas. Iš ankstesnio pavyzdžio randame disko kilimo laiką:
 
arba
 
Toliau randame disko kritimo laiką:
 
Visas laikas, kurį diskas prabus ore yra:
 
Disko horizontalus skrydimo greitis yra:
 
Atstumas, kuri nuskris diskas (iki tol kol pasieks žemę), metamas iš 2 metrų aukščio, yra:
 
Diskas metamas iš 2 metru aukščio tuo pačiu greičiu   (m/s), kaip ir iš 0 metrų aukščio nuskris
  metro toliau. Nuskris beveik 2 metrais toliau.
Sprendimas kitu budu. Pirmiausia randame vertikalų greitį   iki kurio diskas įsibegėja krisdamas iš 19.5 metro aukščio iki 2 metrų aukščio:
  arba
  arba
 
Toliau surandame kokį vertikalų greitį diskas pasiektų, jei kristų iš 2 metrų aukščio:
 
Randame vertikalų greitį   kurį diskas pasieks prilietęs žemę, krisdamas iš   metrų aukščio:
  arba
 
Atsakymas 24.781249514 (m/s) yra neteisingas. Tebunie tai pamoka kaip skaičiuoti negalima.
Toliau randame vidutinį greitį   kuriuo diskas vertikaliai krenta 2 metrų atstumą:
 
Padalinę   iš disko vertikalaus vidutinio kritimo greičio   gausime kritimo laiką   per kurį diskas nukrenta paskutinius 2 metrus iš 19.5 metrų:
 
Atstumas, kurį nuskris diskas (mestas 45 laipsniu kampu, pradiniu greičiu   ir įgijęs horizontalų greitį  ) per laiką   yra:
 
Skaičiuojant abiais būdais atsakymai sutampa ( ).

Mesto akmens trajektorija

keisti
Mesto akmens M, pradiniu greičiu  , kampu   su teigiama Ox ašimi, padėtis bet kuriuo laiko momentu t nusakoma lygybėmis
 
 
Tai - parametrinės trajektorijos lygtys (parametras yra laikas t).

Gravitacijos ir parabolės ryšis

keisti

Jei duota funkcija   tai pažymėję  ,  , galime surasti momentinį greitį laiko momentu t. Tada

 
Parinkę   sekunės, gausime greitį   (m/s).
Randame pagreitį:
 
Kad gauti bet kokį pagreitį reikia imti lygtį  


  • Pavyzdis. Surasti laisvojo kritimo pagreitį planetoje, kurioje po 10 s, kūnas nukrenta 100 metrų. Surasti koks bus greitis po 10 s. Oro pasipriešinimo nepaisyti.
Sprendimas. S=100 (m), t=10 (s). Nesunku matyti, kad  ,   (m/s), a=g=(2t)'=2.
Patikriname, kad  


  • Pavyzdis. Nukristo atstumo lygtis yra  . Čia t yra laikas, o h yra aukštis iš kurio mestas kūnas. Rasti kūno greitį po 10 sekundžių ir kokį atstumą nukris kūnas ir koks bus to kūno galutinis greitis ir koks yra laisvojo kritimo pagreitis. Oro pasipriešinimo nepaisyti.
Sprendimas. Duota: t=10 (s). Rasti: v, h, g.
 
 
 


  • Pavyzdis. Nukristo atstumo lygtis yra  . Čia t yra laikas, o h yra aukštis iš kurio mestas kūnas. Rasti kūno greitį po 5 sekundžių ir kokį atstumą nukris kūnas ir koks bus to kūno galutinis greitis ir koks yra laisvojo kritimo pagreitis. Oro pasipriešinimo nepaisyti.
Sprendimas. Duota: t=5 (s). Rasti: v, h, g.
 
 
 


  • Pavyzdis. Nukristo atstumo lygtis yra  . Čia t yra laikas, o h yra aukštis iš kurio mestas kūnas. Rasti kūno greitį po 3 sekundžių ir kokį atstumą nukris kūnas ir koks bus to kūno galutinis greitis ir koks yra laisvojo kritimo pagreitis. Oro pasipriešinimo nepaisyti.
Sprendimas. Duota: t=3 (s). Rasti: v, h, g.
 
 
 

Papildomos formulės geresniam pagreičio ir gravitacijos supratimui

keisti
 
 
 
 
čia S - kelias arba aukštis; a - pagreitis; t - laikas;  .

Pavyzdžiai

keisti
  • Kai   tada:
 
 


  • Kai   tada:
 
 


  • Kai   tada:
 
 


  • Duota:  
Rasti: kelią S.
Sprendimas.
 
 


  • Duota:  
Rasti: kelią S.
Sprendimas.
 
 
 


  • Duota:  
Rasti: kelią S.
Sprendimas.
 
 
 


Įrodymas, kad gravitacijos formulė yra teisinga

keisti
Įrodysime, kad formulė   yra teisinga.


  • Pavyzdžiui, kokį atstumą h nukris akmuo per 4 sekundes, kai laisvojo kritimo pagreitis  ?
Pirmą sekundę akmes greitis bus  
Antrą sekundę akmes greitis bus  
Trečią sekundę akmes greitis bus  
Ketvirtą sekundę akmes greitis bus  
Per pirmą sekundę akmes vidutinis greitis bus  
Per antrą sekundę akmes vidutinis greitis bus  
Per trečią sekundę akmes vidutinis greitis bus  
Per ketvirtą sekundę akmes vidutinis greitis bus  
Atstumas, kurį akmuo nukris per 4 sekundes yra
 
(Per pirmą sekundę akmuo nukrenta 5 metrus; per antrą sekundę akmuo nukrenta 15 metrų; per trečią sekundę akmuo nukrenta 25 metrus; per ketvirtą sekundę akmuo nukrenta 35 metrus.)
Dabar įstatome   ir   į formulę   ir gauname:
 
Galima vidutinį akmens kritimo greitį paskaičiuoti taip:
 
Akmuo krito 4 sekundes, todėl akmens nukristas kelias yra akmens kritimo laikas padaugintas iš akmens kritimo vidutinio greičio:
 
Žinant, kad   kur   galime išvesti   formulę:
 


  • Akmuo krenta 6 sekundes. Kokį atsumą nukris akmuo nuo trečios sekundės iki šeštos sekundės? Laisvojo kritimo pagreitis   Oro pasipriešinimo nepaisyti.
Sprendimas pirmu būdu. Turime   Randame akmens greitį po 6 sekundžių ir po 3 sekundžių:
 
 
Toliau randame kokius atstumus akmuo nukris po 3 ir po 6 sekundžių padauginę vidutinį greitį iš kritimo laiko:
 
 
arba
 
 
Dabar tereikia atimti atstumą, kurį akmuo krito pirmas 3 sekundes iš atstumo, kurį akmuo krito visas 6 sekundes:
 
Sprendimas antru būdu. Pirma reikia surasti koks buvo akmens kritimo vidutinis greitis tarp trečios sekundės ir šeštos sekundės.
 
Toliau, akmens kritimo vidutinį greitį (tarp   ir  ) padauginame iš akmens kritimo laiko (kuris yra 3 sekundės).