Pagrindinis puslapis
Atsitiktinis
Prisijungti
Nustatymai
Aukoti
Apie Vikiknygas
Atsakomybės apribojimas
Paieška
Matematika/Homogeninės diferencialinės lygtys
Kalba
Stebėti
Keisti
<
Matematika
Šis straipsnis yra apie
Homogeninių diferencialinių lygtčių
sprendimą.
x
2
d
y
−
y
(
y
+
x
)
d
x
=
0
,
{\displaystyle x^{2}dy-y(y+x)dx=0,}
d
y
d
x
=
y
(
y
+
x
)
x
2
,
x
≠
0
,
{\displaystyle {dy \over dx}={y(y+x) \over x^{2}},\;x\neq 0,}
u
′
x
+
u
=
u
x
(
u
x
+
x
)
x
2
,
{\displaystyle u'x+u={ux(ux+x) \over x^{2}},}
y
=
u
x
,
{\displaystyle y=ux,}
y
′
=
u
′
x
+
u
,
{\displaystyle y'=u'x+u,}
u
′
x
+
u
=
u
2
+
u
,
{\displaystyle u'x+u=u^{2}+u,}
u
′
x
=
u
2
,
{\displaystyle u'x=u^{2},}
d
u
u
2
=
d
x
x
,
{\displaystyle {du \over u^{2}}={dx \over x},}
∫
d
u
u
2
=
∫
d
x
x
,
{\displaystyle \int {du \over u^{2}}=\int {dx \over x},}
−
1
u
=
ln
|
x
|
+
ln
C
,
{\displaystyle -{1 \over u}=\ln |x|+\ln C,}
e
−
x
y
=
C
x
.
{\displaystyle e^{-{x \over y}}=Cx.}
y
′
x
−
x
2
−
y
=
0
,
{\displaystyle y'x-x^{2}-y=0,}
y
=
u
x
,
{\displaystyle y=ux,}
y
′
=
u
′
x
+
u
,
{\displaystyle y'=u'x+u,}
(
u
′
x
+
u
)
x
−
x
2
−
u
x
=
0
,
{\displaystyle (u'x+u)x-x^{2}-ux=0,}
u
′
x
+
u
−
x
−
u
=
0
,
{\displaystyle u'x+u-x-u=0,}
u
′
x
=
x
,
{\displaystyle u'x=x,}
d
u
d
x
=
1
,
{\displaystyle {du \over dx}=1,}
∫
d
u
=
∫
d
x
,
{\displaystyle \int du=\int dx,}
u
=
x
+
C
,
{\displaystyle u=x+C,}
y
x
=
x
+
C
,
{\displaystyle {y \over x}=x+C,}
y
=
x
2
+
C
x
.
{\displaystyle y=x^{2}+Cx.}
x
y
′
=
y
ln
y
x
,
y
(
1
)
=
e
,
{\displaystyle xy'=y\ln {y \over x},\;y(1)={\sqrt {e}},}
y
′
=
y
x
ln
y
x
,
{\displaystyle y'={y \over x}\ln {y \over x},}
y
=
u
x
,
{\displaystyle y=ux,}
y
′
=
u
′
x
+
u
,
{\displaystyle y'=u'x+u,}
u
′
x
+
u
=
u
ln
u
,
{\displaystyle u'x+u=u\ln u,}
u
′
x
=
u
(
ln
u
−
1
)
,
{\displaystyle u'x=u(\ln u-1),}
d
u
u
(
ln
u
−
1
)
=
d
x
x
,
{\displaystyle {du \over u(\ln u-1)}={dx \over x},}
∫
d
(
ln
u
−
1
)
ln
u
−
1
=
∫
d
x
x
,
{\displaystyle \int {d(\ln u-1) \over \ln u-1}=\int {dx \over x},}
ln
|
ln
u
−
1
|
=
ln
|
x
|
+
ln
C
,
{\displaystyle \ln |\ln u-1|=\ln |x|+\ln C,}
ln
u
−
1
=
C
x
,
{\displaystyle \ln u-1=Cx,}
u
=
e
C
x
+
1
,
{\displaystyle u=e^{Cx+1},}
y
=
x
e
C
x
+
1
,
{\displaystyle y=xe^{Cx+1},}
e
1
2
=
1
⋅
e
C
⋅
1
+
1
,
{\displaystyle e^{1 \over 2}=1\cdot e^{C\cdot 1+1},}
C
=
−
0.5
,
{\displaystyle C=-0.5,}
y
=
x
e
1
−
x
2
.
{\displaystyle y=xe^{1-{x \over 2}}.}
d
y
d
x
=
x
y
x
2
−
y
2
,
{\displaystyle {dy \over dx}={xy \over x^{2}-y^{2}},}
y
x
=
u
,
{\displaystyle {y \over x}=u,}
y
=
u
x
,
{\displaystyle y=ux,}
d
y
d
x
=
u
+
x
d
u
d
x
,
{\displaystyle {dy \over dx}=u+x{du \over dx},}
u
+
x
d
u
d
x
=
u
x
2
y
2
u
2
−
u
2
x
2
,
{\displaystyle u+x{du \over dx}={ux^{2} \over {y^{2} \over u^{2}}-u^{2}x^{2}},}
u
+
x
d
u
d
x
=
u
y
2
x
2
u
2
−
u
2
,
{\displaystyle u+x{du \over dx}={u \over {y^{2} \over x^{2}u^{2}}-u^{2}},}
u
+
x
d
u
d
x
=
u
u
2
u
2
−
u
2
,
{\displaystyle u+x{du \over dx}={u \over {u^{2} \over u^{2}}-u^{2}},}
u
+
x
d
u
d
x
=
u
1
−
u
2
,
{\displaystyle u+x{du \over dx}={u \over 1-u^{2}},}
x
d
u
d
x
=
u
3
1
−
u
2
,
{\displaystyle x{du \over dx}={u^{3} \over 1-u^{2}},}
1
−
u
2
u
3
d
u
=
d
x
x
,
{\displaystyle {1-u^{2} \over u^{3}}du={dx \over x},}
∫
(
1
u
3
−
1
u
)
d
u
=
∫
d
x
x
,
{\displaystyle \int ({1 \over u^{3}}-{1 \over u})du=\int {dx \over x},}
−
1
2
u
2
−
ln
|
u
|
=
ln
|
x
|
+
ln
|
C
|
,
{\displaystyle -{1 \over 2u^{2}}-\ln |u|=\ln |x|+\ln |C|,}
−
1
2
u
2
=
ln
|
u
x
C
|
,
{\displaystyle -{1 \over 2u^{2}}=\ln |uxC|,}
−
x
2
2
y
2
=
ln
|
C
y
|
,
{\displaystyle -{x^{2} \over 2y^{2}}=\ln |Cy|,}
x
=
y
−
2
ln
|
C
y
|
.
{\displaystyle x=y{\sqrt {-2\ln |Cy|}}.}