Bus per Pitagoro teoremą įrodyta, kad sinuso, kosinuso eilutės ir skaičiuotuvo reikšmės yra teisingos.
Iš pradžiu, paliginsime kalkuliatoriaus reikšme, tam tikram kampui k su
sin
k
{\displaystyle \sin k}
Tailoro eilutės rezultatu. Tarkim, kampas k=60 laipsnių arba
k
=
1
,
047197551
{\displaystyle k=1,047197551}
radianų. Tuomet kalkuliatoriaus reikšmė:
sin
k
=
sin
1.047197551
=
3
2
=
0.866025403.
{\displaystyle \sin k=\sin 1.047197551={{\sqrt {3}} \over 2}=0.866025403.}
sin
k
=
∑
n
=
0
∞
(
−
1
)
n
(
2
n
+
1
)
!
k
2
n
+
1
=
k
−
k
3
3
!
+
k
5
5
!
−
k
7
7
!
+
k
9
9
!
−
.
.
.
=
{\displaystyle \sin k=\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{(2n+1)!}}k^{2n+1}=k-{\frac {k^{3}}{3!}}+{\frac {k^{5}}{5!}}-{\frac {k^{7}}{7!}}+{\frac {k^{9}}{9!}}-...=}
=
1.047197551
−
1.047197551
3
3
!
+
1.047197551
5
5
!
−
1.047197551
7
7
!
+
1.047197551
9
9
!
−
1.047197551
11
11
!
=
{\displaystyle =1.047197551-{\frac {1.047197551^{3}}{3!}}+{\frac {1.047197551^{5}}{5!}}-{\frac {1.047197551^{7}}{7!}}+{\frac {1.047197551^{9}}{9!}}-{\frac {1.047197551^{11}}{11!}}=}
=
0.866025403.
{\displaystyle =0.866025403.}
Net po salyginai trumpos eilutės atsakymo tikslumas gavosi =>9 skaičiai po kablelio.
Kai kampas k=1 radianas, tada
sin
k
=
sin
1
=
0
,
841470984
{\displaystyle \sin k=\sin 1=0,841470984}
.
sin
k
=
sin
1
≈
1
−
1
3
3
!
+
1
5
5
!
−
1
7
7
!
=
1
−
1
6
+
1
120
−
1
5040
=
0.841468254.
{\displaystyle \sin k=\sin 1\approx 1-{\frac {1^{3}}{3!}}+{\frac {1^{5}}{5!}}-{\frac {1^{7}}{7!}}=1-{1 \over 6}+{1 \over 120}-{1 \over 5040}=0.841468254.}
sin
k
=
sin
1
=
1
−
1
3
3
!
+
1
5
5
!
−
1
7
7
!
+
1
9
9
!
=
1
−
1
6
+
1
120
−
1
5040
+
1
362880
=
0.841471009.
{\displaystyle \sin k=\sin 1=1-{\frac {1^{3}}{3!}}+{\frac {1^{5}}{5!}}-{\frac {1^{7}}{7!}}+{\frac {1^{9}}{9!}}=1-{1 \over 6}+{1 \over 120}-{1 \over 5040}+{\frac {1}{362880}}=0.841471009.}
sin
1
=
1
−
1
3
3
!
+
1
5
5
!
−
1
7
7
!
+
1
9
9
!
−
1
11
11
!
=
1
−
1
6
+
1
120
−
1
5040
+
1
362880
−
1
39916800
=
0.841470984.
{\displaystyle \sin 1=1-{\frac {1^{3}}{3!}}+{\frac {1^{5}}{5!}}-{\frac {1^{7}}{7!}}+{\frac {1^{9}}{9!}}-{\frac {1^{11}}{11!}}=1-{1 \over 6}+{1 \over 120}-{1 \over 5040}+{\frac {1}{362880}}-{1 \over 39916800}=0.841470984.}
cos
k
=
cos
1
=
∑
n
=
0
∞
(
−
1
)
n
(
2
n
)
!
k
2
n
=
1
−
k
2
2
!
+
k
4
4
!
−
⋯
=
1
−
1
2
2
!
+
1
4
4
!
−
1
6
6
!
+
1
8
8
!
=
{\displaystyle \cos k=\cos 1=\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{(2n)!}}k^{2n}=1-{\frac {k^{2}}{2!}}+{\frac {k^{4}}{4!}}-\cdots =1-{\frac {1^{2}}{2!}}+{\frac {1^{4}}{4!}}-{\frac {1^{6}}{6!}}+{\frac {1^{8}}{8!}}=}
=
1
−
1
2
+
1
24
−
1
720
+
1
40320
=
0.540302579.
{\displaystyle =1-{1 \over 2}+{1 \over 24}-{1 \over 720}+{1 \over 40320}=0.540302579.}
Kalkuliatoriaus reikšmė:
cos
1
=
0.540302305
{\displaystyle \cos 1=0.540302305}
.
Tariam, kad
sin
k
=
b
{\displaystyle \sin k=b}
, o
cos
k
=
1
−
a
{\displaystyle \cos k=1-a}
. Kampas k šioje užduotyje yra lygus 1 radianui (k=1). Tiesės a reikšmės gali būti nuo 0 iki 1. Tiesės b reikšmės gali būti nuo 0 iki 1.
Dabar toliau labai svarbu apčiupti bet kuriuos taškus ant apskritimo, kurio spindulys r=1, bet, kad tie taškai sujungtų daug trumpų tiesių taip, kad tos sujungtos tiesės labai primintų apskritimo lanko formą ir kad kiekviena tiesė nebūtų ilgesnė 3 kartus už betkurią kitą tiesę, kuri jungia bet kuriuos 2 taškus.
Taigi, pradedame rinkti taškus ant Ox ašies:
x
1
=
1
{\displaystyle x_{1}=1}
;
x
2
=
0.9
{\displaystyle x_{2}=0.9}
;
x
3
=
0.8
{\displaystyle x_{3}=0.8}
;
x
4
=
0.7
{\displaystyle x_{4}=0.7}
;
x
5
=
0.6
{\displaystyle x_{5}=0.6}
;
x
6
=
0.5
{\displaystyle x_{6}=0.5}
;
x
7
=
0.4
{\displaystyle x_{7}=0.4}
;
x
8
=
0.3
{\displaystyle x_{8}=0.3}
; koordinatės
x
9
{\displaystyle x_{9}}
gali ir neprireikti, nes
cos
1
{\displaystyle \cos 1}
negali būti labai maža reikšmė. Kiekvieno taško koordinatės ant apskritimo lanko bus užrašytos šitaip:
(
x
1
;
y
1
)
{\displaystyle (x_{1};y_{1})}
,
(
x
2
;
y
2
)
{\displaystyle (x_{2};y_{2})}
,
(
x
3
;
y
3
)
,
{\displaystyle (x_{3};y_{3}),}
(
x
4
;
y
4
)
,
{\displaystyle (x_{4};y_{4}),}
(
x
5
;
y
5
)
,
{\displaystyle (x_{5};y_{5}),}
(
x
6
;
y
6
)
,
{\displaystyle (x_{6};y_{6}),}
(
x
7
;
y
7
)
.
{\displaystyle (x_{7};y_{7}).}
Dalį koordinačių jau galima užrašyti dabar:
(
1
;
y
1
)
,
{\displaystyle (1;y_{1}),}
(
0
,
9
;
y
2
)
,
{\displaystyle (0,9;y_{2}),}
(
0
,
8
;
y
3
)
,
{\displaystyle (0,8;y_{3}),}
(
0
,
7
;
y
4
)
,
{\displaystyle (0,7;y_{4}),}
(
0
,
6
;
y
5
)
,
{\displaystyle (0,6;y_{5}),}
(
0
,
5
;
y
6
)
{\displaystyle (0,5;y_{6})}
,
(
0
,
4
;
y
7
)
{\displaystyle (0,4;y_{7})}
. Likusią dalį koordinačių gausime pasinaudoję Pitagoro teorema:
y
1
=
r
2
−
x
1
2
=
1
2
−
1
2
=
0
;
{\displaystyle y_{1}={\sqrt {r^{2}-x_{1}^{2}}}={\sqrt {1^{2}-1^{2}}}=0;}
y
2
=
r
2
−
x
2
2
=
1
2
−
0.9
2
=
1
−
0.81
=
0.19
=
0.435889894
;
{\displaystyle y_{2}={\sqrt {r^{2}-x_{2}^{2}}}={\sqrt {1^{2}-0.9^{2}}}={\sqrt {1-0.81}}={\sqrt {0.19}}=0.435889894;}
y
3
=
r
2
−
x
3
2
=
1
2
−
0.8
2
=
0.36
=
0.6
;
{\displaystyle y_{3}={\sqrt {r^{2}-x_{3}^{2}}}={\sqrt {1^{2}-0.8^{2}}}={\sqrt {0.36}}=0.6;}
y
4
=
r
2
−
x
4
2
=
1
2
−
0.7
2
=
0.51
=
0.714142842
;
{\displaystyle y_{4}={\sqrt {r^{2}-x_{4}^{2}}}={\sqrt {1^{2}-0.7^{2}}}={\sqrt {0.51}}=0.714142842;}
y
5
=
r
2
−
x
5
2
=
1
2
−
0.6
2
=
0.64
=
0.8
;
{\displaystyle y_{5}={\sqrt {r^{2}-x_{5}^{2}}}={\sqrt {1^{2}-0.6^{2}}}={\sqrt {0.64}}=0.8;}
y
6
=
r
2
−
x
6
2
=
1
2
−
0.5
2
=
0.75
=
0.866025403
;
{\displaystyle y_{6}={\sqrt {r^{2}-x_{6}^{2}}}={\sqrt {1^{2}-0.5^{2}}}={\sqrt {0.75}}=0.866025403;}
y
7
=
r
2
−
x
7
2
=
1
2
−
0.4
2
=
0.84
=
0.916515139.
{\displaystyle y_{7}={\sqrt {r^{2}-x_{7}^{2}}}={\sqrt {1^{2}-0.4^{2}}}={\sqrt {0.84}}=0.916515139.}
Dabar žinome visų reikiamų taškų, esančių ant apskritimo lanko, koordinates:
(
1
;
0
)
,
{\displaystyle (1;0),}
(
0
,
9
;
0
,
435889894
)
,
{\displaystyle (0,9;0,435889894),}
(
0
,
8
;
0.6
)
,
{\displaystyle (0,8;0.6),}
(
0
,
7
;
0.714142842
)
,
{\displaystyle (0,7;0.714142842),}
(
0
,
6
;
0.8
)
,
{\displaystyle (0,6;0.8),}
(
0
,
5
;
0.866025403
)
{\displaystyle (0,5;0.866025403)}
,
(
0
,
4
;
0.916515139
)
{\displaystyle (0,4;0.916515139)}
.
Jeigu kalkuliatorius suranda teisingai
cos
k
{\displaystyle \cos k}
ir
sin
k
{\displaystyle \sin k}
reikšmes, tai sudėję visus tiesių ilgius (šių tiesių ilgiai bus surasti), kuriuos sudaro taškai turėtume gauti kampą k .
Yra žinoma, kad atstumas h nuo vieno taško
(
x
1
;
y
1
)
{\displaystyle (x_{1};y_{1})}
iki kito taško
(
x
2
;
y
2
)
{\displaystyle (x_{2};y_{2})}
yra randamas pagal formulę:
h
=
(
x
1
−
x
2
)
2
+
(
y
1
−
y
2
)
2
.
{\displaystyle h={\sqrt {(x_{1}-x_{2})^{2}+(y_{1}-y_{2})^{2}}}.}
Todėl:
k
1
=
(
x
1
−
x
2
)
2
+
(
y
1
−
y
2
)
2
=
(
1
−
0.9
)
2
+
(
0
−
0.19
)
2
=
0.01
+
0.19
=
0.2
=
0.447213595
;
{\displaystyle k_{1}={\sqrt {(x_{1}-x_{2})^{2}+(y_{1}-y_{2})^{2}}}={\sqrt {(1-0.9)^{2}+(0-{\sqrt {0.19}})^{2}}}={\sqrt {0.01+0.19}}={\sqrt {0.2}}=0.447213595;}
k
2
=
(
x
2
−
x
3
)
2
+
(
y
2
−
y
3
)
2
=
(
0.9
−
0.8
)
2
+
(
0.19
−
0.6
)
2
=
0.1
2
+
(
−
0.164110105
)
2
=
{\displaystyle k_{2}={\sqrt {(x_{2}-x_{3})^{2}+(y_{2}-y_{3})^{2}}}={\sqrt {(0.9-0.8)^{2}+({\sqrt {0.19}}-0.6)^{2}}}={\sqrt {0.1^{2}+(-0.164110105)^{2}}}=}
=
0.01
+
0.026932126
=
0.036932126
=
0.192177331
;
{\displaystyle ={\sqrt {0.01+0.026932126}}={\sqrt {0.036932126}}=0.192177331;}
k
3
=
(
x
3
−
x
4
)
2
+
(
y
3
−
y
4
)
2
=
(
0.8
−
0.7
)
2
+
(
0.6
−
0.51
)
2
=
0.1
2
+
(
−
0.114142842
)
2
=
{\displaystyle k_{3}={\sqrt {(x_{3}-x_{4})^{2}+(y_{3}-y_{4})^{2}}}={\sqrt {(0.8-0.7)^{2}+(0.6-{\sqrt {0.51}})^{2}}}={\sqrt {0.1^{2}+(-0.114142842)^{2}}}=}
=
0.023028588
=
0.151751733
;
{\displaystyle ={\sqrt {0.023028588}}=0.151751733;}
k
4
=
(
x
4
−
x
5
)
2
+
(
y
4
−
y
5
)
2
=
(
0.7
−
0.6
)
2
+
(
0.51
−
0.8
)
2
=
0.1
2
+
(
−
0.085857157
)
2
=
{\displaystyle k_{4}={\sqrt {(x_{4}-x_{5})^{2}+(y_{4}-y_{5})^{2}}}={\sqrt {(0.7-0.6)^{2}+({\sqrt {0.51}}-0.8)^{2}}}={\sqrt {0.1^{2}+(-0.085857157)^{2}}}=}
=
0.017371451
=
0.131800802
;
{\displaystyle ={\sqrt {0.017371451}}=0.131800802;}
k
5
=
(
x
5
−
x
6
)
2
+
(
y
5
−
y
6
)
2
=
(
0.6
−
0.5
)
2
+
(
0.8
−
0.75
)
2
=
0.1
2
+
(
−
0.066025403
)
2
=
{\displaystyle k_{5}={\sqrt {(x_{5}-x_{6})^{2}+(y_{5}-y_{6})^{2}}}={\sqrt {(0.6-0.5)^{2}+(0.8-{\sqrt {0.75}})^{2}}}={\sqrt {0.1^{2}+(-0.066025403)^{2}}}=}
=
0.014359353
=
0.119830521
;
{\displaystyle ={\sqrt {0.014359353}}=0.119830521;}
k
6
=
(
x
6
−
x
7
)
2
+
(
y
6
−
y
7
)
2
=
(
0.5
−
0.4
)
2
+
(
0.75
−
0.84
)
2
=
0.1
2
+
(
−
0.050489735
)
2
=
{\displaystyle k_{6}={\sqrt {(x_{6}-x_{7})^{2}+(y_{6}-y_{7})^{2}}}={\sqrt {(0.5-0.4)^{2}+({\sqrt {0.75}}-{\sqrt {0.84}})^{2}}}={\sqrt {0.1^{2}+(-0.050489735)^{2}}}=}
=
0.012549213
=
0.112023271.
{\displaystyle ={\sqrt {0.012549213}}=0.112023271.}
a
1
=
(
x
1
−
x
2
)
=
1
−
0.9
=
0.1
;
{\displaystyle a_{1}=(x_{1}-x_{2})=1-0.9=0.1;}
a
2
=
(
x
2
−
x
3
)
=
0.9
−
0.8
=
0.1
;
{\displaystyle a_{2}=(x_{2}-x_{3})=0.9-0.8=0.1;}
a
3
=
(
x
3
−
x
4
)
=
0.8
−
0.7
=
0.1
;
{\displaystyle a_{3}=(x_{3}-x_{4})=0.8-0.7=0.1;}
a
4
=
(
x
4
−
x
5
)
=
0.7
−
0.6
=
0.1
;
{\displaystyle a_{4}=(x_{4}-x_{5})=0.7-0.6=0.1;}
a
5
=
(
x
5
−
x
6
)
=
0.6
−
0.5
=
0.1
;
{\displaystyle a_{5}=(x_{5}-x_{6})=0.6-0.5=0.1;}
a
6
=
(
x
6
−
x
7
)
=
0.5
−
0.4
=
0.1.
{\displaystyle a_{6}=(x_{6}-x_{7})=0.5-0.4=0.1.}
Matome, kad
cos
1
=
0.540302305
{\displaystyle \cos 1=0.540302305}
, bet sudėjus 5 dalis gaunama
a
=
a
1
+
a
2
+
a
3
+
a
4
+
a
5
=
0.1
+
0.1
+
0.1
+
0.1
+
0.1
=
0.5
{\displaystyle a=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}=0.1+0.1+0.1+0.1+0.1=0.5}
arba sudėjus 6 dalis gaunama
a
=
a
1
+
a
2
+
a
3
+
a
4
+
a
5
+
a
6
=
0.1
+
0.1
+
0.1
+
0.1
+
0.1
+
0.1
=
0.6
{\displaystyle a=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}=0.1+0.1+0.1+0.1+0.1+0.1=0.6}
(todėl tikslingiau būtų skirstyti po 0,05 tiesę a , kad gautusi 0,55). Bet
cos
k
=
1
−
a
{\displaystyle \cos k=1-a}
, todėl arba 1-0,5=0.5 arba 1-0.6=0.4.
Su sinusu reikalai yra tokie
sin
1
=
0.841470984
{\displaystyle \sin 1=0.841470984}
.
b
1
=
(
y
2
−
y
1
)
=
0.19
−
0
=
0.435889894
;
{\displaystyle b_{1}=(y_{2}-y_{1})={\sqrt {0.19}}-0=0.435889894;}
b
2
=
(
y
3
−
y
2
)
=
0.6
−
0.435889894
=
0.164110105
;
{\displaystyle b_{2}=(y_{3}-y_{2})=0.6-0.435889894=0.164110105;}
b
3
=
(
y
4
−
y
3
)
=
0.714142842
−
0.6
=
0.114142842
;
{\displaystyle b_{3}=(y_{4}-y_{3})=0.714142842-0.6=0.114142842;}
b
4
=
(
y
5
−
y
4
)
=
0
,
8
−
0.714142842
=
0.085857157
;
{\displaystyle b_{4}=(y_{5}-y_{4})=0,8-0.714142842=0.085857157;}
b
5
=
(
y
6
−
y
5
)
=
0.866025403
−
0.8
=
0.066025403
;
{\displaystyle b_{5}=(y_{6}-y_{5})=0.866025403-0.8=0.066025403;}
b
6
=
(
y
7
−
y
6
)
=
0.916515139
−
0.866025403
=
0
,
050489735.
{\displaystyle b_{6}=(y_{7}-y_{6})=0.916515139-0.866025403=0,050489735.}
b
=
b
1
+
b
2
+
b
3
+
b
4
+
b
5
=
0
,
866025401.
{\displaystyle b=b_{1}+b_{2}+b_{3}+b_{4}+b_{5}=0,866025401.}
b
1
+
b
2
+
b
3
+
b
4
+
b
5
+
b
6
=
0
,
916515136.
{\displaystyle b_{1}+b_{2}+b_{3}+b_{4}+b_{5}+b_{6}=0,916515136.}
Matome, kad sudejus tik penkias dalis, gaunami atsakymai artimesni skaičiuotuvu gautai reikšmei nei sudėjus 6 dalis.
k
=
k
1
+
k
2
+
k
3
+
k
4
+
k
5
=
0.447213595
+
0.192177331
+
0.151751733
+
0.131800802
+
0.119830521
=
1.042773983.
{\displaystyle k=k_{1}+k_{2}+k_{3}+k_{4}+k_{5}=0.447213595+0.192177331+0.151751733+0.131800802+0.119830521=1.042773983.}
k
1
+
k
2
+
k
3
+
k
4
+
k
5
+
k
6
=
0.447213595
+
0.192177331
+
0.151751733
+
0.131800802
+
0.119830521
+
0.112023271
=
1.154797254.
{\displaystyle k_{1}+k_{2}+k_{3}+k_{4}+k_{5}+k_{6}=0.447213595+0.192177331+0.151751733+0.131800802+0.119830521+0.112023271=1.154797254.}
Štai dar kalkuliatoriumi gautos reikšmės palygintos su per Pitagoro teoremą gautomis reikšmėmis:
a
=
cos
1.042773983
=
0.503826018
{\displaystyle a=\cos 1.042773983=0.503826018}
prieš 0,5.
b
=
sin
1.042773983
=
0.863805153
{\displaystyle b=\sin 1.042773983=0.863805153}
prieš 0,866025401.
a
=
cos
1.154797254
=
0.404103996
{\displaystyle a=\cos 1.154797254=0.404103996}
prieš 0,4.
b
=
sin
1.154797254
=
0.914713047
{\displaystyle b=\sin 1.154797254=0.914713047}
prieš 0,916515136.