Vaizdas:Kreivispav136.jpg 136 pav.
Tegu lankas kreivės
M
0
M
{\displaystyle M_{0}M}
(136 pav.) yra grafikas funkcijos
y
=
f
(
x
)
{\displaystyle y=f(x)\;}
, apibrėžtas intervale (a, b) . Nustatysime kreivės lanko ilgį. Paimsime ant kreivės AB taškus
M
0
{\displaystyle M_{0}}
,
M
1
{\displaystyle M_{1}}
,
M
2
{\displaystyle M_{2}}
, ...,
M
i
−
1
{\displaystyle M_{i-1}}
,
M
i
{\displaystyle M_{i}}
, ...,
M
n
−
1
{\displaystyle M_{n-1}}
,
M
{\displaystyle M}
. Sujungę paimtus taškus, gausime laužtą liniją
M
0
M
1
M
2
.
.
.
M
i
−
1
M
i
.
.
.
M
n
−
1
M
,
{\displaystyle M_{0}M_{1}M_{2}...M_{i-1}M_{i}...M_{n-1}M,}
įbrėžtą į lanką
M
0
M
{\displaystyle M_{0}M}
. Pažymėsime ilgį šitos laužtės per
P
n
{\displaystyle P_{n}}
.
Lanko ilgiu
M
0
M
{\displaystyle M_{0}M}
vadinasi riba (pažymėsime ją per s ), prie kurios artėja lanko ilgis, artėjant prie nulio lanko atkarpų ilgiams
M
i
−
1
M
i
{\displaystyle M_{i-1}M_{i}}
, jeigu šita riba egzistuoja ir nepriklauso nuo parinktų lanko taškų
M
0
M
1
M
2
.
.
.
M
i
−
1
M
i
.
.
.
M
n
−
1
M
.
{\displaystyle M_{0}M_{1}M_{2}...M_{i-1}M_{i}...M_{n-1}M.}
Pažymėsime, kad šitas apibrėžimas lanko ilgio betkokios kreivės analoginis apibrėžimui apskritimo ilgio.
Yra įrodyta, kad jeigu atkarpoje [a , b ] funkcija
f
(
x
)
{\displaystyle f(x)\;}
ir jos išvestinė
f
′
(
x
)
{\displaystyle f'(x)\;}
netrūkios, tai lankas kreivės
y
=
f
(
x
)
,
{\displaystyle y=f(x),\;}
esantis tarp taškų
[
a
;
f
(
a
)
]
{\displaystyle [a;\;f(a)]}
ir
[
b
;
f
(
b
)
]
,
{\displaystyle [b;\;f(b)],}
turi tam tikrą ilgį, be to yra būdas apskaičiavimo šito ilgio. Yra nustatyta (kaip pasekmė), kad nurodytose sąlygose santykis ilgio betkokio lanko šitos kreivės su ilgiu susitraukiančios stygos artėja prie 1, kai ilgis stygos artėja prie 0:
lim
M
0
M
→
0
i
l
g
.
M
0
M
˘
i
l
g
.
M
0
M
¯
=
1.
{\displaystyle \lim _{M_{0}M\to 0}{\frac {ilg.\;{\breve {M_{0}M}}}{ilg.\;{\overline {M_{0}M}}}}=1.}
Vaizdas:Kreivispav137.jpg 137 pav.
Šita teorema lengvai gali būti įrodyta apskritimui (panagrinėkime lanką AB , kurio centrinis kampas lygus
2
α
{\displaystyle 2\alpha }
(137 pav); ilgis šito lanko lygus
2
R
α
{\displaystyle 2R\alpha }
, o ilgis susitraukiančios jo stygos lygus
2
R
sin
α
{\displaystyle 2R\sin \alpha }
; todėl
lim
α
→
0
A
B
˘
A
B
¯
=
lim
α
→
0
2
R
α
2
R
sin
α
=
1
{\displaystyle \lim _{\alpha \to 0}{\frac {\breve {AB}}{\overline {AB}}}=\lim _{\alpha \to 0}{\frac {2R\alpha }{2R\sin \alpha }}=1}
), bet bendru atveju mes kol kas priimsime ją be įrodymo.
Panagrinėkime sekantį klausimą. Tegu mes turime ant plokšumos kreivę, kurios lygtis
y
=
f
(
x
)
.
{\displaystyle y=f(x).\;}
Vaizdas:Kreivispav138.jpg 138 pav.
Tegu
M
0
(
x
0
;
y
0
)
{\displaystyle M_{0}(x_{0};y_{0})}
- tam tikras fiksuotas taškas kreivės, o
M
(
x
;
y
)
{\displaystyle M(x;y)}
- kintantis taškas šitos kreivės. Pažymėsime per s ilgį lanko
M
0
M
{\displaystyle M_{0}M}
(138 pav.).
Kintant abscisei x taško M ilgis s lanko kis, t. y. s yra funkcija x . Rasime išvestinę s nuo x .
Duosime x priaugimą
Δ
x
{\displaystyle \Delta x}
. Tada styga s gaus priaugimą
Δ
s
=
ilg.
M
M
1
˘
.
{\displaystyle \Delta s={\text{ilg.}}\;{\breve {MM_{1}}}.}
Tegu
M
M
1
¯
{\displaystyle {\overline {MM_{1}}}}
- styga, sutraukianti šitą lanką. Tam, kad rasti
lim
Δ
x
→
0
Δ
s
Δ
x
,
{\displaystyle \lim _{\Delta x\to 0}{\frac {\Delta s}{\Delta x}},}
pasielgsime sekančiu budu: iš
Δ
M
M
1
Q
{\displaystyle \Delta MM_{1}Q}
randame:
(
M
M
1
¯
)
2
=
(
Δ
x
)
2
+
(
Δ
y
)
2
.
{\displaystyle ({\overline {MM_{1}}})^{2}=(\Delta x)^{2}+(\Delta y)^{2}.}
Padauginsime ir padalinsime kairę dalį iš
Δ
s
2
{\displaystyle \Delta s^{2}}
:
(
M
M
1
¯
Δ
s
)
2
Δ
s
2
=
(
Δ
x
)
2
+
(
Δ
y
)
2
.
{\displaystyle \left({\frac {\overline {MM_{1}}}{\Delta s}}\right)^{2}\Delta s^{2}=(\Delta x)^{2}+(\Delta y)^{2}.}
Padalinsime visus narius lygybės iš
Δ
x
2
{\displaystyle \Delta x^{2}}
:
(
M
M
1
¯
Δ
s
)
2
(
Δ
s
Δ
x
)
2
=
1
+
(
Δ
y
Δ
x
)
2
.
{\displaystyle \left({\frac {\overline {MM_{1}}}{\Delta s}}\right)^{2}\left({\frac {\Delta s}{\Delta x}}\right)^{2}=1+\left({\frac {\Delta y}{\Delta x}}\right)^{2}.}
Rasime ribą kairės ir dešinės dalies kai
Δ
x
→
0.
{\displaystyle \Delta x\to 0.}
Atsižvelgiant, kad
lim
M
M
1
¯
→
0
M
M
1
¯
Δ
s
=
1
{\displaystyle \lim _{{\overline {MM_{1}}}\to 0}{\frac {\overline {MM_{1}}}{\Delta s}}=1}
ir kad
lim
Δ
x
→
0
Δ
y
Δ
x
=
d
y
d
x
,
{\displaystyle \lim _{\Delta x\to 0}{\frac {\Delta y}{\Delta x}}={\frac {dy}{dx}},}
gausime:
(
d
s
d
x
)
2
=
1
+
(
d
y
d
x
)
2
{\displaystyle \left({\frac {ds}{dx}}\right)^{2}=1+\left({\frac {dy}{dx}}\right)^{2}}
arba
d
s
d
x
=
1
+
(
d
y
d
x
)
2
.
(
1
)
{\displaystyle {\frac {ds}{dx}}={\sqrt {1+\left({\frac {dy}{dx}}\right)^{2}}}.\quad (1)}
Lanko diferencialui gausime sekančią išraišką:
d
s
=
1
+
(
d
y
d
x
)
2
d
x
(
2
)
{\displaystyle ds={\sqrt {1+\left({\frac {dy}{dx}}\right)^{2}}}dx\quad (2)}
arba
d
s
=
d
x
2
+
d
y
2
.
(
2
′
)
{\displaystyle ds={\sqrt {dx^{2}+dy^{2}}}.\quad (2')}
Griežtai kalbant, formulė (2') teisinga tik tam atvejui, kada
d
x
>
0.
{\displaystyle dx>0.}
Jeigu gi
d
x
<
0
{\displaystyle dx<0}
, tai
d
s
=
−
d
x
2
+
d
y
2
.
{\displaystyle ds=-{\sqrt {dx^{2}+dy^{2}}}.}
Todėl, bendru atveju šitą formulę teisingiau užrašyti taip:
|
d
s
|
=
d
x
2
+
d
y
2
.
{\displaystyle |ds|={\sqrt {dx^{2}+dy^{2}}}.}
Mes gavome diferencialo išraišką lanko ilgio tam atvejui, kada kreivė apibūdinta lygtimi
y
=
f
(
x
)
.
{\displaystyle y=f(x).\;}
Visgi formulė (2') išsisaugo ir tuo atveju, kada kreivė apibūdinta parametrinėmis lygtimis.
Jeigu kreivė apibūdinta parametriškai:
x
=
ϕ
(
t
)
,
y
=
ψ
(
t
)
,
{\displaystyle x=\phi (t),\quad y=\psi (t),}
tai
d
x
=
ϕ
′
(
t
)
d
t
,
d
y
=
ψ
′
(
t
)
d
t
,
{\displaystyle {\text{d}}x=\phi '(t){\text{d}}t,\quad {\text{d}}y=\psi '(t){\text{d}}t,}
ir išraiška (2') įgauna pavidalą
d
s
=
[
ϕ
′
(
t
)
]
2
+
[
ψ
′
(
t
)
]
2
d
t
.
{\displaystyle ds={\sqrt {[\phi '(t)]^{2}+[\psi '(t)]^{2}}}dt.}
Rasti hiperbolės
y
=
2
x
{\displaystyle y={\sqrt {2x}}}
lanko ilgį L , kai x kinta nuo 1 iki 7.
Sprendimas .
d
y
d
x
=
(
2
x
)
′
=
1
2
⋅
(
2
x
)
′
2
x
=
1
2
x
;
{\displaystyle {\frac {dy}{dx}}=({\sqrt {2x}})'={\frac {1}{2}}\cdot {\frac {(2x)'}{\sqrt {2x}}}={\frac {1}{\sqrt {2x}}};}
L
=
∫
a
b
1
+
(
y
′
)
2
d
x
=
∫
1
7
1
+
(
1
2
x
)
2
d
x
=
∫
1
7
1
+
1
2
x
d
x
=
{\displaystyle L=\int _{a}^{b}{\sqrt {1+(y')^{2}}}dx=\int _{1}^{7}{\sqrt {1+\left({\frac {1}{\sqrt {2x}}}\right)^{2}}}dx=\int _{1}^{7}{\sqrt {1+{\frac {1}{2x}}}}dx=}
=
[
x
1
2
x
+
1
+
1
4
ln
(
2
2
x
1
x
+
2
+
4
x
+
2
)
]
|
1
7
=
{\displaystyle =\left[x{\sqrt {{\frac {1}{2x}}+1}}+{\frac {1}{4}}\ln \left(2{\sqrt {2}}x{\sqrt {{\frac {1}{x}}+2}}+4x+2\right)\right]|_{1}^{7}=}
=
[
x
1
2
x
+
1
+
1
4
ln
(
4
x
1
2
x
+
1
+
4
x
+
2
)
]
|
1
7
=
{\displaystyle =\left[x{\sqrt {{\frac {1}{2x}}+1}}+{\frac {1}{4}}\ln \left(4x{\sqrt {{\frac {1}{2x}}+1}}+4x+2\right)\right]|_{1}^{7}=}
=
[
7
1
2
⋅
7
+
1
+
1
4
ln
(
4
⋅
7
⋅
1
2
⋅
7
+
1
+
4
⋅
7
+
2
)
]
−
[
1
2
+
1
+
1
4
ln
(
4
1
2
+
1
+
4
+
2
)
]
=
{\displaystyle =\left[7{\sqrt {{\frac {1}{2\cdot 7}}+1}}+{\frac {1}{4}}\ln \left(4\cdot 7\cdot {\sqrt {{\frac {1}{2\cdot 7}}+1}}+4\cdot 7+2\right)\right]-\left[{\sqrt {{\frac {1}{2}}+1}}+{\frac {1}{4}}\ln \left(4{\sqrt {{\frac {1}{2}}+1}}+4+2\right)\right]=}
=
[
7
1
14
+
1
+
1
4
ln
(
28
⋅
1
14
+
1
+
28
+
2
)
]
−
[
1.5
+
1
4
ln
(
4
1.5
+
6
)
]
=
{\displaystyle =\left[7{\sqrt {{\frac {1}{14}}+1}}+{\frac {1}{4}}\ln \left(28\cdot {\sqrt {{\frac {1}{14}}+1}}+28+2\right)\right]-\left[{\sqrt {1.5}}+{\frac {1}{4}}\ln(4{\sqrt {1.5}}+6)\right]=}
=
[
7
15
14
+
1
4
ln
(
28
⋅
15
14
+
30
)
]
−
[
1.224744871
+
1
4
ln
(
4.898979486
+
6
)
]
=
{\displaystyle =\left[7{\sqrt {\frac {15}{14}}}+{\frac {1}{4}}\ln \left(28\cdot {\sqrt {\frac {15}{14}}}+30\right)\right]-\left[1.224744871+{\frac {1}{4}}\ln(4.898979486+6)\right]=}
=
7
1.071428571
+
1
4
ln
(
28
⋅
1.071428571
+
30
)
−
[
1.224744871
+
2.38866916
4
]
=
{\displaystyle =7{\sqrt {1.071428571}}+{\frac {1}{4}}\ln \left(28\cdot {\sqrt {1.071428571}}+30\right)-\left[1.224744871+{\frac {2.38866916}{4}}\right]=}
=
7
⋅
1.035098339
+
1
4
ln
(
28
⋅
1.035098339
+
30
)
−
[
1.224744871
+
0.597167289
]
=
{\displaystyle =7\cdot 1.035098339+{\frac {1}{4}}\ln(28\cdot 1.035098339+30)-[1.224744871+0.597167289]=}
=
7.245688373
+
ln
(
28.98275349
+
30
)
4
−
1.821912161
=
{\displaystyle =7.245688373+{\frac {\ln(28.98275349+30)}{4}}-1.821912161=}
=
7.245688373
+
4.077245087
4
−
1.821912161
=
{\displaystyle =7.245688373+{\frac {4.077245087}{4}}-1.821912161=}
=
7.245688373
+
1.019311272
−
1.821912161
=
8.264999645
−
1.821912161
=
6.443087484.
{\displaystyle =7.245688373+1.019311272-1.821912161=8.264999645-1.821912161=6.443087484.}
Pasinaudojome internetiniu integratoriumi http://integrals.wolfram.com/index.jsp?expr=Sqrt%5B1%2B+1%2F%282x%29%5D+&random=false .
Patikriname ar tiesės ilgis iš taško
M
1
(
1
;
2
)
{\displaystyle M_{1}(1;{\sqrt {2}})}
iki taško
M
2
(
7
;
14
)
{\displaystyle M_{2}(7;{\sqrt {14}})}
nėra didesnis:
L
T
=
(
7
−
1
)
2
+
(
14
−
2
)
2
=
6
2
+
(
3.741657387
−
1.414213562
)
2
=
36
+
2.327443824
2
=
{\displaystyle L_{T}={\sqrt {(7-1)^{2}+({\sqrt {14}}-{\sqrt {2}})^{2}}}={\sqrt {6^{2}+(3.741657387-1.414213562)^{2}}}={\sqrt {36+2.327443824^{2}}}=}
=
36
+
5.416994756
=
41.41699476
=
6.435603682.
{\displaystyle ={\sqrt {36+5.416994756}}={\sqrt {41.41699476}}=6.435603682.}
Rasti lanko ilgį iš taško
M
0
(
0
;
5
2
)
{\displaystyle M_{0}(0;\;{\frac {5}{2}})}
iki taško
M
1
(
−
20
;
27.5
)
{\displaystyle M_{1}(-20;\;27.5)}
parabolės
y
=
x
2
16
+
5
2
.
{\displaystyle y={\frac {x^{2}}{16}}+{\frac {5}{2}}.}
Sprendimas .
Rasime parabolės lanko ilgį iš taško
M
0
(
0
;
5
2
)
{\displaystyle M_{0}(0;\;{\frac {5}{2}})}
iki taško
M
1
(
−
20
;
27.5
)
:
{\displaystyle M_{1}(-20;\;27.5):}
d
y
d
x
=
(
x
2
16
+
5
2
)
′
=
2
x
16
=
x
8
;
{\displaystyle {\frac {dy}{dx}}=({\frac {x^{2}}{16}}+{\frac {5}{2}})'={\frac {2x}{16}}={\frac {x}{8}};}
L
=
∫
a
b
1
+
(
y
′
)
2
d
x
=
∫
−
20
0
1
+
(
x
8
)
2
d
x
=
∫
−
20
0
1
+
x
2
64
d
x
=
∫
−
20
0
1
8
64
+
x
2
d
x
=
{\displaystyle L=\int _{a}^{b}{\sqrt {1+(y')^{2}}}dx=\int _{-20}^{0}{\sqrt {1+\left({\frac {x}{8}}\right)^{2}}}dx=\int _{-20}^{0}{\sqrt {1+{\frac {x^{2}}{64}}}}dx=\int _{-20}^{0}{\frac {1}{8}}{\sqrt {64+x^{2}}}dx=}
=
1
8
(
x
2
64
+
x
2
+
64
2
ln
|
x
+
x
2
+
64
|
)
|
−
20
0
=
{\displaystyle ={\frac {1}{8}}\left({\frac {x}{2}}{\sqrt {64+x^{2}}}+{\frac {64}{2}}\ln \left|x+{\sqrt {x^{2}+64}}\right|\right)|_{-20}^{0}=}
=
1
8
[
0
2
64
+
0
2
+
64
2
ln
|
0
+
0
2
+
64
|
]
−
1
8
[
−
20
2
64
+
(
−
20
)
2
+
64
2
ln
|
−
20
+
(
−
20
)
2
+
64
|
]
=
{\displaystyle ={\frac {1}{8}}\left[{\frac {0}{2}}{\sqrt {64+0^{2}}}+{\frac {64}{2}}\ln \left|0+{\sqrt {0^{2}+64}}\right|\right]-{\frac {1}{8}}\left[{\frac {-20}{2}}{\sqrt {64+(-20)^{2}}}+{\frac {64}{2}}\ln \left|-20+{\sqrt {(-20)^{2}+64}}\right|\right]=}
=
1
8
[
32
ln
|
64
|
]
−
1
8
[
−
10
464
+
32
ln
|
−
20
+
464
|
]
=
{\displaystyle ={\frac {1}{8}}\left[32\ln \left|{\sqrt {64}}\right|\right]-{\frac {1}{8}}\left[-10{\sqrt {464}}+32\ln \left|-20+{\sqrt {464}}\right|\right]=}
=
32
8
ln
|
8
|
−
1
8
[
−
215.4065923
+
32
ln
|
−
20
+
21.54065923
|
]
=
{\displaystyle ={\frac {32}{8}}\ln \left|8\right|-{\frac {1}{8}}[-215.4065923+32\ln \left|-20+21.54065923\right|]=}
=
4
ln
|
8
|
−
1
8
[
−
215.4065923
+
32
ln
|
1.540659229
|
]
=
{\displaystyle =4\ln |8|-{\frac {1}{8}}[-215.4065923+32\ln |1.540659229|]=}
=
4
ln
|
8
|
−
1
8
[
−
215.4065923
+
32
⋅
0.432210395
]
=
{\displaystyle =4\ln |8|-{\frac {1}{8}}[-215.4065923+32\cdot 0.432210395]=}
=
4
⋅
2.079441542
−
1
8
[
−
215.4065923
+
13.83073265
]
=
{\displaystyle =4\cdot 2.079441542-{\frac {1}{8}}[-215.4065923+13.83073265]=}
=
8.317766167
+
201.5758597
8
=
8.317766167
+
25.19698246
=
33.51474862.
{\displaystyle =8.317766167+{\frac {201.5758597}{8}}=8.317766167+25.19698246=33.51474862.}
Pasinaudojome integralų lentele
∫
x
2
±
a
2
d
x
=
x
2
a
2
±
x
2
±
a
2
2
ln
|
x
+
x
2
±
a
2
|
+
C
.
{\displaystyle \int {\sqrt {x^{2}\pm a^{2}}}\;{\mathsf {d}}x={\frac {x}{2}}{\sqrt {a^{2}\pm x^{2}}}\pm {\frac {a^{2}}{2}}\ln \left|x+{\sqrt {x^{2}\pm a^{2}}}\right|+C.}
ds ilgis polinėse koordinatėse
keisti
x
=
ρ
cos
θ
,
y
=
ρ
sin
θ
.
{\displaystyle x=\rho \cos \theta ,\quad y=\rho \sin \theta .}
ρ
=
f
(
θ
)
.
{\displaystyle \rho =f(\theta ).}
d
y
d
x
=
d
y
d
θ
d
x
d
θ
.
{\displaystyle {\frac {dy}{dx}}={\frac {\frac {dy}{d\theta }}{\frac {dx}{d\theta }}}.}
d
x
d
θ
=
d
ρ
d
θ
cos
θ
−
ρ
sin
θ
,
d
y
d
θ
=
d
ρ
d
θ
sin
θ
+
ρ
cos
θ
.
{\displaystyle {\frac {dx}{d\theta }}={\frac {d\rho }{d\theta }}\cos \theta -\rho \sin \theta ,\quad {\frac {dy}{d\theta }}={\frac {d\rho }{d\theta }}\sin \theta +\rho \cos \theta .}
d
x
=
(
d
ρ
d
θ
cos
θ
−
ρ
sin
θ
)
d
θ
.
{\displaystyle dx=({\frac {d\rho }{d\theta }}\cos \theta -\rho \sin \theta )d\theta .}
d
s
=
1
+
(
d
y
d
x
)
2
d
x
=
1
+
(
d
ρ
d
θ
sin
θ
+
ρ
cos
θ
d
ρ
d
θ
cos
θ
−
ρ
sin
θ
)
2
(
d
ρ
d
θ
cos
θ
−
ρ
sin
θ
)
d
θ
=
{\displaystyle ds={\sqrt {1+\left({\frac {dy}{dx}}\right)^{2}}}dx={\sqrt {1+\left({\frac {{\frac {d\rho }{d\theta }}\sin \theta +\rho \cos \theta }{{\frac {d\rho }{d\theta }}\cos \theta -\rho \sin \theta }}\right)^{2}}}({\frac {d\rho }{d\theta }}\cos \theta -\rho \sin \theta )d\theta =}
=
(
d
ρ
d
θ
cos
θ
−
ρ
sin
θ
)
2
+
(
d
ρ
d
θ
sin
θ
+
ρ
cos
θ
)
2
d
θ
=
{\displaystyle ={\sqrt {\left({\frac {d\rho }{d\theta }}\cos \theta -\rho \sin \theta \right)^{2}+\left({\frac {d\rho }{d\theta }}\sin \theta +\rho \cos \theta \right)^{2}}}d\theta =}
=
[
(
d
ρ
d
θ
)
2
cos
2
θ
−
2
ρ
d
ρ
d
θ
sin
(
θ
)
cos
(
θ
)
+
ρ
2
sin
2
θ
]
+
[
(
d
ρ
d
θ
)
2
sin
2
θ
+
2
ρ
d
ρ
d
θ
sin
(
θ
)
cos
(
θ
)
+
ρ
2
cos
2
θ
]
d
θ
=
{\displaystyle ={\sqrt {\left[\left({\frac {d\rho }{d\theta }}\right)^{2}\cos ^{2}\theta -2\rho {\frac {d\rho }{d\theta }}\sin(\theta )\cos(\theta )+\rho ^{2}\sin ^{2}\theta \right]+\left[\left({\frac {d\rho }{d\theta }}\right)^{2}\sin ^{2}\theta +2\rho {\frac {d\rho }{d\theta }}\sin(\theta )\cos(\theta )+\rho ^{2}\cos ^{2}\theta \right]}}d\theta =}
=
(
d
ρ
d
θ
)
2
cos
2
θ
+
ρ
2
sin
2
θ
+
(
d
ρ
d
θ
)
2
sin
2
θ
+
ρ
2
cos
2
θ
d
θ
=
(
d
ρ
d
θ
)
2
+
ρ
2
d
θ
=
ρ
2
+
(
ρ
′
)
2
d
θ
.
{\displaystyle ={\sqrt {\left({\frac {d\rho }{d\theta }}\right)^{2}\cos ^{2}\theta +\rho ^{2}\sin ^{2}\theta +\left({\frac {d\rho }{d\theta }}\right)^{2}\sin ^{2}\theta +\rho ^{2}\cos ^{2}\theta }}\;d\theta ={\sqrt {\left({\frac {d\rho }{d\theta }}\right)^{2}+\rho ^{2}}}\;d\theta ={\sqrt {\rho ^{2}+(\rho ')^{2}}}\;d\theta .}