Pirmojo tipo kreivinis integralas naudojamas dvimačio ar trimačio lanko masės apskaičiavimui. Galima apskaičiuoti masę, kai ji pastovi ar kai kinta pagal tam tikrą funkciją. Jeigu masė pastovi, tai jos skaičiavimas sutampa su lanko ilgio skaičiavimu.
d
s
=
1
+
y
′
2
d
x
,
{\displaystyle ds={\sqrt {1+y'^{2}}}dx,}
kai kreivė L apibrėžta lygtimi y=y(x), o
a
≤
x
≤
b
.
{\displaystyle a\leq x\leq b.}
∫
L
f
(
x
,
y
)
d
s
=
∫
a
b
f
(
x
,
y
(
x
)
)
1
+
(
y
′
(
x
)
)
2
d
x
.
{\displaystyle \int _{L}f(x,y)ds=\int _{a}^{b}f(x,y(x)){\sqrt {1+(y'(x))^{2}}}dx.}
Kai kreivė L apibrėžta parametrinėmis lygtimis
x
=
x
(
t
)
,
{\displaystyle x=x(t),}
y
=
y
(
t
)
,
{\displaystyle y=y(t),}
t
∈
[
t
0
;
T
]
,
{\displaystyle t\in [t_{0};T],}
tai
d
s
=
x
t
′
2
+
y
t
′
2
d
t
,
{\displaystyle ds={\sqrt {x_{t}'^{2}+y_{t}'^{2}}}dt,}
todėl
∫
L
f
(
x
,
y
)
d
s
=
∫
t
0
T
f
(
x
(
t
)
,
y
(
t
)
)
x
t
′
2
+
y
t
′
2
d
t
.
{\displaystyle \int _{L}f(x,y)ds=\int _{t_{0}}^{T}f(x(t),y(t)){\sqrt {x_{t}'^{2}+y_{t}'^{2}}}dt.}
Kai prametrinėmis lygtimis
x
=
x
(
t
)
,
{\displaystyle x=x(t),}
y
=
y
(
t
)
,
{\displaystyle y=y(t),}
z
=
z
(
t
)
,
{\displaystyle z=z(t),}
t
∈
[
t
0
;
T
]
{\displaystyle t\in [t_{0};T]}
apibrėžta erdvinė kreivė L , tai
∫
L
f
(
x
,
y
,
z
)
d
s
=
∫
t
0
T
f
(
x
(
t
)
,
y
(
t
)
,
z
(
t
)
)
x
t
′
2
+
y
t
′
2
+
z
t
′
2
d
t
.
{\displaystyle \int _{L}f(x,y,z)ds=\int _{t_{0}}^{T}f(x(t),y(t),z(t)){\sqrt {x_{t}'^{2}+y_{t}'^{2}+z_{t}'^{2}}}dt.}
Kai kreivė L polinėje koordinačių sistemoje apibrėžta lygtimi
ρ
=
ρ
(
ϕ
)
,
{\displaystyle \rho =\rho (\phi ),}
ϕ
∈
[
α
;
β
]
{\displaystyle \phi \in [\alpha ;\beta ]}
tai
d
s
=
ρ
2
+
ρ
′
2
d
ϕ
{\displaystyle ds={\sqrt {\rho ^{2}+\rho '^{2}}}d\phi }
ir
∫
L
f
(
x
,
y
)
d
s
=
∫
α
β
f
(
ρ
cos
ϕ
,
ρ
sin
ϕ
)
ρ
2
+
ρ
′
2
d
ϕ
.
{\displaystyle \int _{L}f(x,y)ds=\int _{\alpha }^{\beta }f(\rho \cos \phi ,\rho \sin \phi ){\sqrt {\rho ^{2}+\rho '^{2}}}d\phi .}
Apskaičiuokime integralą
∫
L
(
x
+
y
)
d
s
,
{\displaystyle \int _{L}(x+{\sqrt {y}})ds,}
kai L - prabolės
y
=
1
2
x
2
{\displaystyle y={1 \over 2}x^{2}}
lankas nuo taško (0; 0) iki taško (1; 1/2).
Remdamiesi sąlyga
y
=
1
2
x
2
,
{\displaystyle y={1 \over 2}x^{2},}
randame y'=x,
d
s
=
1
+
x
2
.
{\displaystyle ds={\sqrt {1+x^{2}}}.}
Pritaikę pirmą formulę, gauname
∫
L
(
x
+
y
)
d
s
=
∫
0
1
(
x
+
1
2
x
)
1
+
x
2
d
x
=
(
1
+
1
2
)
∫
0
1
x
1
+
x
2
d
x
=
{\displaystyle \int _{L}(x+{\sqrt {y}})ds=\int _{0}^{1}(x+{1 \over {\sqrt {2}}}x){\sqrt {1+x^{2}}}dx=(1+{1 \over {\sqrt {2}}})\int _{0}^{1}x{\sqrt {1+x^{2}}}dx=}
=
2
+
1
2
∫
0
1
1
+
x
2
d
(
1
+
x
2
)
2
=
2
+
1
3
2
(
1
+
x
2
)
3
|
0
1
=
2
+
1
3
2
(
2
2
−
1
)
=
4
−
1
+
2
2
−
2
3
2
=
3
+
2
3
2
=
1
6
(
2
+
3
2
)
,
{\displaystyle ={{\sqrt {2}}+1 \over {\sqrt {2}}}\int _{0}^{1}{\sqrt {1+x^{2}}}{d(1+x^{2}) \over 2}={{\sqrt {2}}+1 \over 3{\sqrt {2}}}{\sqrt {(1+x^{2})^{3}}}|_{0}^{1}={{\sqrt {2}}+1 \over 3{\sqrt {2}}}(2{\sqrt {2}}-1)={4-1+2{\sqrt {2}}-{\sqrt {2}} \over 3{\sqrt {2}}}={3+{\sqrt {2}} \over 3{\sqrt {2}}}={1 \over 6}(2+3{\sqrt {2}}),}
kur
d
(
1
+
x
2
)
=
2
x
d
x
;
{\displaystyle d(1+x^{2})=2xdx;}
d
x
=
d
(
1
+
x
2
)
2
x
.
{\displaystyle dx={d(1+x^{2}) \over 2x}.}
Apskaičiuosime kreivinį integralą
∫
A
B
y
d
l
,
{\displaystyle \int _{AB}y\;dl,}
kur AB - parabolės
y
2
=
2
x
{\displaystyle y^{2}=2x}
lankas nuo taško (0; 0) iki taško (2; 2).
Turime
y
=
2
x
,
y
′
=
1
2
x
,
d
l
=
1
+
y
′
2
d
x
=
1
+
1
2
x
d
x
.
{\displaystyle y={\sqrt {2x}},\;y'={1 \over {\sqrt {2x}}},\;dl={\sqrt {1+y'^{2}}}dx={\sqrt {1+{1 \over 2x}}}dx.}
Pagal pirmą formulę gauname
∫
A
B
y
d
l
=
∫
0
2
2
x
1
+
1
2
x
d
x
=
∫
0
2
2
x
+
1
d
x
=
∫
0
2
2
x
+
1
d
(
2
x
+
1
)
2
=
(
2
x
+
1
)
3
2
3
|
0
2
=
5
5
−
1
3
.
{\displaystyle \int _{AB}ydl=\int _{0}^{2}{\sqrt {2x}}{\sqrt {1+{1 \over 2x}}}dx=\int _{0}^{2}{\sqrt {2x+1}}dx=\int _{0}^{2}{\sqrt {2x+1}}{d(2x+1) \over 2}={(2x+1)^{3 \over 2} \over 3}|_{0}^{2}={5{\sqrt {5}}-1 \over 3}.}
Apskaičiuokime kreivės
y
2
=
4
9
x
3
,
{\displaystyle y^{2}={4 \over 9}x^{3},}
(
x
∈
[
3
;
8
]
)
{\displaystyle (x\in [3;8])}
lanko L masę, kai tankis kreivės taške yra tiesiog proporcingas to taško ordinatei (y ) ir atvirkščiai proporcingas kvadratinei šakniai iš to taško abscisės (
1
/
x
1
/
2
{\displaystyle 1/x^{1/2}}
), be to, taške
(
4
;
16
3
)
{\displaystyle (4;{16 \over 3})}
jo (tankio) reikšmė lygi 8 g/cm.
Kreivės lanko masę, kai to lanko tankis lygus
γ
(
x
,
y
)
{\displaystyle \gamma (x,y)}
, apskaičiuosime pagal formulę
m
=
∫
L
γ
(
x
,
y
)
d
s
.
{\displaystyle m=\int _{L}\gamma (x,y)ds.}
Pagal uždavinio sąlyga, tankis lygus
γ
(
x
,
y
)
=
k
y
x
;
{\displaystyle \gamma (x,y)={ky \over {\sqrt {x}}};}
čia k - proporcingumo koeficientas. Kadangi
γ
=
8
{\displaystyle \gamma =8}
, kai
x
=
4
,
{\displaystyle x=4,}
y
=
16
3
,
{\displaystyle y={16 \over 3},}
tai iš lygybės
8
=
k
16
3
4
=
8
k
3
{\displaystyle 8=k{{16 \over 3} \over {\sqrt {4}}}={8k \over 3}}
gauname: k=3. Tuomet, pagal formule,
m
=
∫
L
γ
(
x
,
y
)
d
s
=
3
∫
L
y
x
d
s
.
{\displaystyle m=\int _{L}\gamma (x,y)ds=3\int _{L}{y \over {\sqrt {x}}}ds.}
Norėdami apskaičiuoti šį integralą, taikysime pirmą formulę. Iš sąlygos
y
=
2
3
x
x
{\displaystyle y={2 \over 3}x{\sqrt {x}}}
turime
y
′
=
x
{\displaystyle y'={\sqrt {x}}}
ir
d
s
=
1
+
(
y
′
)
2
d
x
=
1
+
x
d
x
.
{\displaystyle ds={\sqrt {1+(y')^{2}}}dx={\sqrt {1+x}}dx.}
Tuomet
m
=
3
∫
3
8
2
3
x
x
x
1
+
x
d
x
=
2
∫
3
8
x
1
+
x
d
x
=
4
∫
2
3
(
t
2
−
1
)
t
2
d
t
=
4
(
t
5
5
−
t
3
3
)
|
2
3
=
{\displaystyle m=3\int _{3}^{8}{{2 \over 3}x{\sqrt {x}} \over {\sqrt {x}}}{\sqrt {1+x}}dx=2\int _{3}^{8}x{\sqrt {1+x}}dx=4\int _{2}^{3}(t^{2}-1)t^{2}dt=4({t^{5} \over 5}-{t^{3} \over 3})|_{2}^{3}=}
=
4
[
243
5
−
9
−
(
32
5
−
8
3
)
]
=
4
(
211
5
−
19
3
)
=
2152
15
(
g
)
=
143.4
(
6
)
(
g
)
,
{\displaystyle =4[{243 \over 5}-9-({32 \over 5}-{8 \over 3})]=4({211 \over 5}-{19 \over 3})={2152 \over 15}\;(g)=143.4(6)\;(g),}
kur
1
+
x
=
t
,
{\displaystyle {\sqrt {1+x}}=t,}
1
+
x
=
t
2
,
{\displaystyle 1+x=t^{2},}
x
=
t
2
−
1
,
{\displaystyle x=t^{2}-1,}
d
x
=
2
t
d
t
,
{\displaystyle dx=2tdt,}
t
1
=
2
,
{\displaystyle t_{1}=2,}
t
2
=
3.
{\displaystyle t_{2}=3.}
Arba galėjome apskaičiuoti integruodami dalimis :
m
=
2
∫
3
8
x
1
+
x
d
x
=
2
x
⋅
2
3
(
1
+
x
)
3
2
|
3
8
−
2
∫
3
8
2
3
(
1
+
x
)
3
2
d
x
=
{\displaystyle m=2\int _{3}^{8}x{\sqrt {1+x}}dx=2x\cdot {2 \over 3}(1+x)^{3 \over 2}|_{3}^{8}-2\int _{3}^{8}{2 \over 3}(1+x)^{3 \over 2}dx=}
=
4
3
x
(
1
+
x
)
1
+
x
|
3
8
−
4
3
⋅
2
5
(
1
+
x
)
5
2
|
3
8
=
(
32
3
⋅
9
⋅
3
−
4
⋅
4
⋅
2
)
−
(
8
15
⋅
3
5
−
8
15
⋅
2
5
)
=
{\displaystyle ={4 \over 3}x(1+x){\sqrt {1+x}}|_{3}^{8}-{4 \over 3}\cdot {2 \over 5}(1+x)^{5 \over 2}|_{3}^{8}=({32 \over 3}\cdot 9\cdot 3-4\cdot 4\cdot 2)-({8 \over 15}\cdot 3^{5}-{8 \over 15}\cdot 2^{5})=}
=
(
288
−
32
)
−
(
1994
15
−
256
15
)
=
256
−
1688
15
=
2152
15
(
g
)
=
143.4
(
6
)
(
g
)
,
{\displaystyle =(288-32)-({1994 \over 15}-{256 \over 15})=256-{1688 \over 15}={2152 \over 15}\;(g)=143.4(6)\;(g),}
kur
u
=
x
,
{\displaystyle u=x,}
d
v
=
1
+
x
,
{\displaystyle dv={\sqrt {1+x}},}
d
u
=
d
x
,
{\displaystyle du=dx,}
v
=
∫
(
1
+
x
)
0.5
d
x
=
2
3
(
1
+
x
)
3
2
.
{\displaystyle v=\int (1+x)^{0.5}dx={2 \over 3}(1+x)^{3 \over 2}.}
cikloidė
Apskaičiuokime integralą
∫
L
x
d
s
,
{\displaystyle \int _{L}xds,}
kai L - pirmoji cikloidės
x
=
a
(
t
−
sin
t
)
,
{\displaystyle x=a(t-\sin t),}
y
=
a
(
1
−
cos
t
)
{\displaystyle y=a(1-\cos t)}
arka.
Taikome antrą formulę. Randame:
x
t
′
=
a
(
1
−
cos
t
)
,
{\displaystyle x_{t}'=a(1-\cos t),}
y
t
′
=
a
sin
t
,
{\displaystyle y_{t}'=a\sin t,}
d
s
=
x
t
′
2
+
y
t
′
2
d
t
=
a
2
(
1
−
cos
t
)
2
+
a
2
sin
2
t
d
t
=
a
1
−
2
cos
t
+
cos
2
+
sin
2
t
d
t
=
{\displaystyle ds={\sqrt {x_{t}'^{2}+y_{t}'^{2}}}dt={\sqrt {a^{2}(1-\cos t)^{2}+a^{2}\sin ^{2}t}}dt=a{\sqrt {1-2\cos t+\cos ^{2}+\sin ^{2}t}}dt=}
=
a
2
−
2
cos
t
d
t
=
a
2
−
2
(
1
−
2
sin
2
t
2
)
d
t
=
2
a
sin
t
2
d
t
.
{\displaystyle =a{\sqrt {2-2\cos t}}dt=a{\sqrt {2-2(1-2\sin ^{2}{t \over 2})}}dt=2a\sin {t \over 2}dt.}
Tuomet
∫
L
d
s
=
2
a
2
∫
0
2
π
(
t
−
sin
t
)
sin
t
2
d
t
=
2
a
2
(
∫
0
2
π
t
sin
t
2
d
t
−
∫
0
2
π
sin
t
sin
t
2
d
t
)
.
{\displaystyle \int _{L}ds=2a^{2}\int _{0}^{2\pi }(t-\sin t)\sin {t \over 2}dt=2a^{2}(\int _{0}^{2\pi }t\sin {t \over 2}dt-\int _{0}^{2\pi }\sin t\sin {t \over 2}dt).}
Pirmąjį integralą integruojame dalimis, pažymėdami
u
=
t
,
{\displaystyle u=t,}
d
v
=
sin
t
2
d
t
,
{\displaystyle dv=\sin {t \over 2}dt,}
d
u
=
d
t
,
{\displaystyle du=dt,}
v
=
∫
sin
t
2
d
t
=
−
2
cos
t
2
,
{\displaystyle v=\int \sin {t \over 2}dt=-2\cos {t \over 2},}
gauname
∫
0
2
π
t
sin
t
2
d
t
=
−
2
(
t
cos
t
2
)
|
0
2
π
+
2
∫
0
2
π
cos
t
2
d
t
=
−
2
(
2
π
(
−
1
)
)
+
4
sin
t
2
|
0
2
π
=
4
π
.
{\displaystyle \int _{0}^{2\pi }t\sin {t \over 2}dt=-2(t\cos {t \over 2})|_{0}^{2\pi }+2\int _{0}^{2\pi }\cos {t \over 2}dt=-2(2\pi (-1))+4\sin {t \over 2}|_{0}^{2\pi }=4\pi .}
Antrąjį integralą apskaičiuojame taikydami formulę
sin
t
sin
t
2
=
(
2
sin
t
2
cos
t
2
)
sin
t
2
=
2
sin
2
t
2
cos
t
2
,
{\displaystyle \sin t\sin {t \over 2}=(2\sin {t \over 2}\cos {t \over 2})\sin {t \over 2}=2\sin ^{2}{t \over 2}\cos {t \over 2},}
d
(
sin
t
2
)
=
cos
t
2
d
(
t
2
)
,
d
(
t
2
)
=
1
2
d
t
,
d
t
=
2
d
(
t
2
)
,
{\displaystyle d(\sin {t \over 2})=\cos {t \over 2}d({t \over 2}),\;d({t \over 2})={1 \over 2}dt,\;dt=2d({t \over 2}),}
reiškia
∫
0
2
π
sin
t
sin
t
2
d
t
=
∫
0
2
π
2
sin
2
t
2
cos
t
2
2
d
(
t
2
)
=
4
∫
0
2
π
sin
2
t
2
d
(
sin
t
2
)
=
4
3
sin
3
t
2
|
0
2
π
=
0.
{\displaystyle \int _{0}^{2\pi }\sin t\sin {t \over 2}dt=\int _{0}^{2\pi }2\sin ^{2}{t \over 2}\cos {t \over 2}\;2d({t \over 2})=4\int _{0}^{2\pi }\sin ^{2}{t \over 2}\;d(\sin {t \over 2})={4 \over 3}\sin ^{3}{t \over 2}|_{0}^{2\pi }=0.}
Todėl bendras integralas lygus:
∫
L
x
d
s
=
2
a
2
(
4
π
−
0
)
=
8
π
a
2
.
{\displaystyle \int _{L}xds=2a^{2}(4\pi -0)=8\pi a^{2}.}
Reikia apskaičiuoti integralą
∫
A
B
(
x
2
+
y
2
+
z
2
)
d
s
{\displaystyle \int _{AB}(x^{2}+y^{2}+z^{2})ds}
pagal vieną viją susuktos linijos:
x
=
cos
t
,
{\displaystyle x=\cos t,}
y
=
sin
t
,
{\displaystyle y=\sin t,}
z
=
t
,
{\displaystyle z=t,}
0
≤
t
≤
2
π
.
{\displaystyle 0\leq t\leq 2\pi .}
Pagal trečią formulę gauname:
∫
A
B
(
x
2
+
y
2
+
z
2
)
d
s
=
∫
0
2
π
(
cos
2
t
+
sin
2
t
+
t
2
)
(
−
sin
t
)
2
+
(
cos
t
)
2
+
1
d
t
=
2
∫
0
2
π
(
1
+
t
2
)
d
t
=
{\displaystyle \int _{AB}(x^{2}+y^{2}+z^{2})ds=\int _{0}^{2\pi }(\cos ^{2}t+\sin ^{2}t+t^{2}){\sqrt {(-\sin t)^{2}+(\cos t)^{2}+1}}dt={\sqrt {2}}\int _{0}^{2\pi }(1+t^{2})dt=}
=
2
(
t
+
t
3
3
|
0
2
π
=
2
2
π
(
1
+
4
π
2
3
)
.
{\displaystyle ={\sqrt {2}}(t+{t^{3} \over 3}|_{0}^{2\pi }=2{\sqrt {2}}\pi (1+{4\pi ^{2} \over 3}).}
Apskaičiuosime integralą
∫
A
B
x
2
d
s
,
{\displaystyle \int _{AB}x^{2}ds,}
kur AB - dalis logoritminės kreivės
y
=
ln
x
{\displaystyle y=\ln x}
nuo
x
=
1
{\displaystyle x=1}
iki
x
=
2.
{\displaystyle x=2.}
Pagal pirmą formulę
∫
A
B
x
2
d
s
=
∫
1
2
x
2
1
+
1
x
2
d
x
=
∫
1
2
x
x
2
+
1
d
x
=
∫
1
2
x
x
2
+
1
d
(
x
2
+
1
)
2
x
=
1
3
(
1
+
x
2
)
3
2
|
x
=
1
x
=
2
=
{\displaystyle \int _{AB}x^{2}ds=\int _{1}^{2}x^{2}{\sqrt {1+{1 \over x^{2}}}}dx=\int _{1}^{2}x{\sqrt {x^{2}+1}}dx=\int _{1}^{2}x{\sqrt {x^{2}+1}}{d(x^{2}+1) \over 2x}={1 \over 3}(1+x^{2})^{3 \over 2}|_{x=1}^{x=2}=}
=
1
3
(
5
5
−
2
2
)
,
{\displaystyle ={1 \over 3}(5{\sqrt {5}}-2{\sqrt {2}}),}
kur
d
(
x
2
+
1
)
=
2
x
d
x
.
{\displaystyle d(x^{2}+1)=2xdx.}
Apskaičiuosime kreivinį integralą
∫
A
B
y
2
d
l
,
{\displaystyle \int _{AB}y^{2}dl,}
kur AB - dalis apskritimo
x
=
a
cos
t
,
{\displaystyle x=a\cos t,}
y
=
a
sin
t
,
{\displaystyle y=a\sin t,}
0
≤
t
≤
π
2
.
{\displaystyle 0\leq t\leq {\pi \over 2}.}
Kadangi
y
2
=
a
2
sin
2
t
,
{\displaystyle y^{2}=a^{2}\sin ^{2}t,}
d
l
=
a
2
sin
2
t
+
a
2
cos
2
t
d
t
=
a
d
t
,
{\displaystyle dl={\sqrt {a^{2}\sin ^{2}t+a^{2}\cos ^{2}t}}dt=a\;dt,}
tai pagal antrą formulę gauname
∫
A
B
y
2
d
l
=
∫
0
π
/
2
a
2
sin
2
t
⋅
a
d
t
=
a
3
2
∫
0
π
2
(
1
−
cos
(
2
t
)
)
d
t
=
a
3
2
(
t
−
sin
(
2
t
)
2
)
|
0
π
2
=
a
3
π
4
.
{\displaystyle \int _{AB}y^{2}dl=\int _{0}^{\pi /2}a^{2}\sin ^{2}t\cdot a\;dt={a^{3} \over 2}\int _{0}^{\pi \over 2}(1-\cos(2t))dt={a^{3} \over 2}(t-{\sin(2t) \over 2})|_{0}^{\pi \over 2}={a^{3}\pi \over 4}.}
Apskaičiuokime
∫
L
(
x
+
y
)
d
s
,
{\displaystyle \int _{L}(x+y)ds,}
kai L - apskritimas
x
2
+
y
2
=
a
y
,
{\displaystyle x^{2}+y^{2}=ay,}
(
a
>
0
)
.
{\displaystyle (a>0).}
Integralą apskaičiuokime, Dekatro koordinates pakeitę polinėmis. Kreivės L lygtis šioje koordinačių sistemoje yra
ρ
=
a
sin
ϕ
,
{\displaystyle \rho =a\sin \phi ,}
ϕ
∈
[
0
;
π
]
.
{\displaystyle \phi \in [0;\pi ].}
Randame
ρ
′
=
a
cos
ϕ
,
{\displaystyle \rho '=a\cos \phi ,}
d
s
=
ρ
2
+
ρ
ϕ
′
2
d
ϕ
=
a
sin
2
ϕ
+
a
cos
2
ϕ
d
ϕ
=
a
d
ϕ
.
{\displaystyle ds={\sqrt {\rho ^{2}+\rho _{\phi }'^{2}}}d\phi ={\sqrt {a\sin ^{2}\phi +a\cos ^{2}\phi }}d\phi =a\;d\phi .}
Tuomet
∫
L
(
x
+
y
)
d
s
=
a
∫
0
π
(
ρ
sin
ϕ
+
ρ
cos
ϕ
)
d
ϕ
=
a
2
∫
0
π
(
sin
2
ϕ
+
sin
ϕ
cos
ϕ
)
d
ϕ
=
{\displaystyle \int _{L}(x+y)ds=a\int _{0}^{\pi }(\rho \sin \phi +\rho \cos \phi )d\phi =a^{2}\int _{0}^{\pi }(\sin ^{2}\phi +\sin \phi \cos \phi )d\phi =}
=
a
2
∫
0
π
(
1
−
cos
(
2
ϕ
)
2
+
sin
(
2
ϕ
)
2
)
d
ϕ
=
a
2
π
2
−
a
2
4
sin
(
2
ϕ
)
|
0
π
−
a
2
4
cos
(
2
ϕ
)
|
0
π
=
a
2
π
2
−
0
−
0
=
π
a
2
2
.
{\displaystyle =a^{2}\int _{0}^{\pi }({1-\cos(2\phi ) \over 2}+{\sin(2\phi ) \over 2})d\phi ={a^{2}\pi \over 2}-{a^{2} \over 4}\sin(2\phi )|_{0}^{\pi }-{a^{2} \over 4}\cos(2\phi )|_{0}^{\pi }={a^{2}\pi \over 2}-0-0={\pi a^{2} \over 2}.}
Kreivės lanko ilgis randamas pagal šitas formules:
d
s
=
1
+
y
′
2
d
x
,
{\displaystyle ds={\sqrt {1+y'^{2}}}dx,}
kai kreivė L apibrėžta lygtimi y=y(x), o
a
≤
x
≤
b
.
{\displaystyle a\leq x\leq b.}
∫
L
d
s
=
∫
a
b
1
+
(
f
′
(
x
)
)
2
d
x
=
∫
a
b
1
+
(
y
′
)
2
d
x
.
(
2
)
{\displaystyle \int _{L}ds=\int _{a}^{b}{\sqrt {1+(f'(x))^{2}}}dx=\int _{a}^{b}{\sqrt {1+(y')^{2}}}dx.\quad (2)}
Kai kreivė L apibrėžta parametrinėmis lygtimis
x
=
x
(
t
)
,
{\displaystyle x=x(t),}
y
=
y
(
t
)
,
{\displaystyle y=y(t),}
t
∈
[
t
0
;
T
]
,
{\displaystyle t\in [t_{0};T],}
tai
d
s
=
x
t
′
2
+
y
t
′
2
d
t
,
{\displaystyle ds={\sqrt {x_{t}'^{2}+y_{t}'^{2}}}dt,}
todėl
∫
L
d
s
=
∫
t
0
T
(
x
t
′
)
2
+
(
y
t
′
)
2
d
t
.
{\displaystyle \int _{L}ds=\int _{t_{0}}^{T}{\sqrt {(x_{t}')^{2}+(y_{t}')^{2}}}dt.}
Elementariausias pavyzdis, kai reikia perrašyti funkcija
y
=
x
2
{\displaystyle y=x^{2}}
parametrinėmis lygtimis. Tuomet pasirenkame (suteikiame parametrus iksui ir igrikui)
x
=
t
;
y
=
t
2
{\displaystyle x=t;\;y=t^{2}}
. Gauname išvestines
x
t
′
=
t
′
=
1
;
y
t
′
=
(
t
2
)
′
=
2
t
{\displaystyle x_{t}'=t'=1;\;y_{t}'=(t^{2})'=2t}
. Vadinasi integralas atrodys taip:
∫
t
0
T
(
x
t
′
)
2
+
(
y
t
′
)
2
d
t
=
∫
t
0
T
1
2
+
(
2
t
)
2
d
t
=
∫
t
0
T
1
+
4
⋅
t
2
d
t
.
{\displaystyle \int _{t_{0}}^{T}{\sqrt {(x_{t}')^{2}+(y_{t}')^{2}}}dt=\int _{t_{0}}^{T}{\sqrt {1^{2}+(2t)^{2}}}dt=\int _{t_{0}}^{T}{\sqrt {1+4\cdot t^{2}}}dt.}
Kai prametrinėmis lygtimis
x
=
x
(
t
)
,
{\displaystyle x=x(t),}
y
=
y
(
t
)
,
{\displaystyle y=y(t),}
z
=
z
(
t
)
,
{\displaystyle z=z(t),}
t
∈
[
t
0
;
T
]
{\displaystyle t\in [t_{0};T]}
apibrėžta erdvinė kreivė L , tai
∫
L
d
s
=
∫
t
0
T
(
x
t
′
)
2
+
(
y
t
′
)
2
+
(
z
t
′
)
2
d
t
.
{\displaystyle \int _{L}ds=\int _{t_{0}}^{T}{\sqrt {(x_{t}')^{2}+(y_{t}')^{2}+(z_{t}')^{2}}}dt.}
Kai kreivė L polinėje koordinačių sistemoje apibrėžta lygtimi
ρ
=
ρ
(
ϕ
)
,
{\displaystyle \rho =\rho (\phi ),}
ϕ
∈
[
α
;
β
]
{\displaystyle \phi \in [\alpha ;\beta ]}
tai
d
s
=
ρ
2
+
ρ
′
2
d
ϕ
{\displaystyle ds={\sqrt {\rho ^{2}+\rho '^{2}}}d\phi }
ir
∫
L
d
s
=
∫
α
β
ρ
2
+
(
ρ
′
)
2
d
ϕ
.
{\displaystyle \int _{L}ds=\int _{\alpha }^{\beta }{\sqrt {\rho ^{2}+(\rho ')^{2}}}d\phi .}
Kreivės lanko ilgio formulių išvedimas
Rasime dabar kreivės lanko ilgį tuo atveju, kai kreivės užrašyta paramtetrinėmis lygtimis:
x
=
ϕ
(
t
)
,
y
=
ψ
(
t
)
(
α
≤
t
≤
β
)
(
4
)
,
{\displaystyle x=\phi (t),\;\;y=\psi (t)\;\;(\alpha \leq t\leq \beta )\quad (4),}
čia
ϕ
(
t
)
{\displaystyle \phi (t)}
ir
ψ
(
t
)
{\displaystyle \psi (t)}
- netrūkios funkcijos su netrūkiomis išvestinėmis, be to
ϕ
′
(
t
)
{\displaystyle \phi '(t)}
užduotoje srityje nevirsta nuliu. Šituo atveju lygtys (4) nusako tam tikrą funkciją
y
=
f
(
x
)
,
{\displaystyle y=f(x),}
netrūkią ir turinčią netrūkią išvestinę
d
y
d
x
=
ψ
′
(
t
)
ϕ
′
(
t
)
.
{\displaystyle {\frac {dy}{dx}}={\frac {\psi '(t)}{\phi '(t)}}.}
Tegu
a
=
ϕ
(
α
)
,
b
=
ϕ
(
β
)
.
{\displaystyle a=\phi (\alpha ),\;b=\phi (\beta ).}
Tada, įstatę integrale (2) keitinį
x
=
ϕ
(
t
)
,
d
x
=
ϕ
′
(
t
)
d
t
,
{\displaystyle x=\phi (t),\;\;dx=\phi '(t)\;dt,}
gausime:
s
=
∫
α
β
1
+
[
ψ
′
(
t
)
ϕ
′
(
t
)
]
2
ϕ
′
(
t
)
d
t
=
∫
α
β
[
ϕ
′
(
t
)
]
2
+
[
ψ
′
(
t
)
]
2
d
t
.
(
5
)
{\displaystyle s=\int _{\alpha }^{\beta }{\sqrt {1+\left[{\frac {\psi '(t)}{\phi '(t)}}\right]^{2}}}\phi '(t)dt=\int _{\alpha }^{\beta }{\sqrt {[\phi '(t)]^{2}+\left[\psi '(t)\right]^{2}}}dt.\quad (5)}
Kreivės lanko ilgis polinėse koordinatėse .
Tegu polinėse koordinatėse kreivės lygtis apibūdinama
ρ
=
f
(
θ
)
,
(
8
)
{\displaystyle \rho =f(\theta ),\quad (8)}
kur
ρ
{\displaystyle \rho }
- poliarinis spindulys,
θ
{\displaystyle \theta }
- poliarinis kampas.
Užrašysime perėjimo formules iš poliarinių koordinačių į dekarto koordinates:
x
=
ρ
cos
θ
,
y
=
ρ
sin
θ
.
{\displaystyle x=\rho \cos \theta ,\;\;y=\rho \sin \theta .}
Jeigu čia vietoje
ρ
{\displaystyle \rho }
įstatyti jo išraišką (8) per
θ
,
{\displaystyle \theta ,}
tai gausime lygtis
x
=
f
(
θ
)
cos
θ
,
y
=
f
(
θ
)
sin
θ
.
{\displaystyle x=f(\theta )\cos \theta ,\;\;y=f(\theta )\sin \theta .}
Šias lygtis galima nagrinėti kaip kreivės parametrines lygtis ir kreivės lanko ilgio apskaičiavimui pritaikyti (5) formulę. Tam rasime išvestines nuo x ir y per parametrą
θ
{\displaystyle \theta }
:
d
x
d
θ
=
f
′
(
θ
)
cos
θ
−
f
(
θ
)
sin
θ
;
d
y
d
θ
=
f
′
(
θ
)
sin
θ
+
f
(
θ
)
cos
θ
.
{\displaystyle {\frac {dx}{d\theta }}=f'(\theta )\cos \theta -f(\theta )\sin \theta ;\;\;{\frac {dy}{d\theta }}=f'(\theta )\sin \theta +f(\theta )\cos \theta .}
Tada
(
d
x
d
θ
)
2
+
(
d
y
d
θ
)
2
=
[
f
′
(
θ
)
]
2
+
[
f
(
θ
)
]
2
=
ρ
′
2
+
ρ
2
.
{\displaystyle \left({\frac {dx}{d\theta }}\right)^{2}+\left({\frac {dy}{d\theta }}\right)^{2}=[f'(\theta )]^{2}+[f(\theta )]^{2}=\rho '^{2}+\rho ^{2}.}
Todėl,
s
=
∫
θ
0
θ
ρ
′
2
+
ρ
2
d
θ
.
{\displaystyle s=\int _{\theta _{0}}^{\theta }{\sqrt {\rho '^{2}+\rho ^{2}}}d\theta .}
Čia patiems mažiausiems (nes matematikai sudaugina ir sudeda mintyse):
(
d
x
d
θ
)
2
=
(
f
′
(
θ
)
cos
θ
−
f
(
θ
)
sin
θ
)
2
=
[
f
′
(
θ
)
]
2
cos
2
θ
−
2
f
′
(
θ
)
cos
θ
f
(
θ
)
sin
θ
+
[
f
(
θ
)
]
2
sin
2
θ
;
{\displaystyle \left({\frac {dx}{d\theta }}\right)^{2}=(f'(\theta )\cos \theta -f(\theta )\sin \theta )^{2}=[f'(\theta )]^{2}\cos ^{2}\theta -2f'(\theta )\cos \theta f(\theta )\sin \theta +[f(\theta )]^{2}\sin ^{2}\theta ;}
(
d
y
d
θ
)
2
=
(
f
′
(
θ
)
sin
θ
+
f
(
θ
)
cos
θ
)
2
=
[
f
′
(
θ
)
]
2
sin
2
θ
+
2
f
′
(
θ
)
sin
θ
f
(
θ
)
cos
θ
+
[
f
(
θ
)
]
2
cos
2
θ
.
{\displaystyle \left({\frac {dy}{d\theta }}\right)^{2}=(f'(\theta )\sin \theta +f(\theta )\cos \theta )^{2}=[f'(\theta )]^{2}\sin ^{2}\theta +2f'(\theta )\sin \theta f(\theta )\cos \theta +[f(\theta )]^{2}\cos ^{2}\theta .}
Baigdami išspręsime pavyzdį, kai
ρ
=
θ
2
,
{\displaystyle \rho =\theta ^{2},}
surasdami spiralės lanko ilgį:
l
=
∫
L
d
s
=
∫
0
2
π
ρ
2
+
(
ρ
′
)
2
d
θ
=
∫
0
2
π
(
θ
2
)
2
+
(
2
θ
)
2
d
θ
=
∫
0
2
π
θ
4
+
4
θ
2
d
θ
=
{\displaystyle l=\int _{L}ds=\int _{0}^{2\pi }{\sqrt {\rho ^{2}+(\rho ')^{2}}}d\theta =\int _{0}^{2\pi }{\sqrt {(\theta ^{2})^{2}+(2\theta )^{2}}}d\theta =\int _{0}^{2\pi }{\sqrt {\theta ^{4}+4\theta ^{2}}}d\theta =}
=
∫
0
2
π
θ
θ
2
+
4
d
θ
=
1
3
(
θ
2
+
4
)
3
2
|
0
2
π
=
1
3
(
(
2
π
)
2
+
4
)
3
2
−
1
3
(
0
2
+
4
)
3
2
=
{\displaystyle =\int _{0}^{2\pi }\theta {\sqrt {\theta ^{2}+4}}\;d\theta ={\frac {1}{3}}\left(\theta ^{2}+4\right)^{3 \over 2}|_{0}^{2\pi }={\frac {1}{3}}\left((2\pi )^{2}+4\right)^{3 \over 2}-{\frac {1}{3}}\left(0^{2}+4\right)^{3 \over 2}=}
=
1
3
(
4
(
π
2
+
1
)
)
3
2
−
8
3
=
(
286.6887126
−
8
)
/
3
=
92.896237521771263212813630524448
;
{\displaystyle ={\frac {1}{3}}(4(\pi ^{2}+1))^{3 \over 2}-{\frac {8}{3}}=(286.6887126-8)/3=92.896237521771263212813630524448;}
l
=
∫
L
d
s
=
∫
0
2
π
ρ
2
+
(
ρ
′
)
2
d
θ
=
∫
0
2
π
(
θ
2
)
2
+
(
2
θ
)
2
d
θ
=
∫
0
2
π
θ
4
+
4
θ
2
d
θ
=
{\displaystyle l=\int _{L}ds=\int _{0}^{2\pi }{\sqrt {\rho ^{2}+(\rho ')^{2}}}d\theta =\int _{0}^{2\pi }{\sqrt {(\theta ^{2})^{2}+(2\theta )^{2}}}d\theta =\int _{0}^{2\pi }{\sqrt {\theta ^{4}+4\theta ^{2}}}d\theta =}
=
∫
0
2
π
θ
θ
2
+
4
d
θ
=
1
2
∫
0
2
π
θ
2
+
4
d
(
θ
2
+
4
)
=
1
2
⋅
(
θ
2
+
4
)
3
/
2
3
2
|
0
2
π
=
(
θ
2
+
4
)
3
/
2
3
|
0
2
π
=
92.89623752
;
{\displaystyle =\int _{0}^{2\pi }\theta {\sqrt {\theta ^{2}+4}}\;d\theta ={\frac {1}{2}}\int _{0}^{2\pi }{\sqrt {\theta ^{2}+4}}\;d(\theta ^{2}+4)={\frac {1}{2}}\cdot {\frac {(\theta ^{2}+4)^{3/2}}{\frac {3}{2}}}|_{0}^{2\pi }={\frac {(\theta ^{2}+4)^{3/2}}{3}}|_{0}^{2\pi }=92.89623752;}
l
=
∫
L
d
s
=
∫
0
2
π
ρ
2
+
(
ρ
′
)
2
d
θ
=
∫
0
2
π
(
θ
2
)
2
+
(
2
θ
)
2
d
θ
=
∫
0
2
π
θ
4
+
4
θ
2
d
θ
=
{\displaystyle l=\int _{L}ds=\int _{0}^{2\pi }{\sqrt {\rho ^{2}+(\rho ')^{2}}}d\theta =\int _{0}^{2\pi }{\sqrt {(\theta ^{2})^{2}+(2\theta )^{2}}}d\theta =\int _{0}^{2\pi }{\sqrt {\theta ^{4}+4\theta ^{2}}}d\theta =}
=
∫
0
2
π
θ
θ
2
+
4
d
θ
=
1
2
∫
0
2
π
θ
2
+
4
d
(
θ
2
)
=
1
2
(
2
⋅
4
3
+
2
θ
2
3
)
θ
2
+
4
|
0
2
π
=
{\displaystyle =\int _{0}^{2\pi }\theta {\sqrt {\theta ^{2}+4}}\;d\theta ={\frac {1}{2}}\int _{0}^{2\pi }{\sqrt {\theta ^{2}+4}}\;d(\theta ^{2})={\frac {1}{2}}\left({\frac {2\cdot 4}{3}}+{\frac {2\theta ^{2}}{3}}\right){\sqrt {\theta ^{2}+4}}|_{0}^{2\pi }=}
=
1
2
(
8
3
+
2
⋅
(
2
π
)
2
3
)
(
2
π
)
2
+
4
−
1
2
(
8
3
+
2
⋅
0
2
3
)
0
2
+
4
=
(
4
3
+
4
π
2
3
)
4
π
2
+
4
−
8
3
=
{\displaystyle ={\frac {1}{2}}\left({\frac {8}{3}}+{\frac {2\cdot (2\pi )^{2}}{3}}\right){\sqrt {(2\pi )^{2}+4}}-{\frac {1}{2}}\left({\frac {8}{3}}+{\frac {2\cdot 0^{2}}{3}}\right){\sqrt {0^{2}+4}}=\left({\frac {4}{3}}+{\frac {4\pi ^{2}}{3}}\right){\sqrt {4\pi ^{2}+4}}-{\frac {8}{3}}=}
=
8
+
8
π
2
3
π
2
+
1
−
8
3
=
8
(
π
2
+
1
)
3
π
2
+
1
−
8
3
=
8
(
π
2
+
1
)
3
2
3
−
8
3
=
{\displaystyle ={\frac {8+8\pi ^{2}}{3}}{\sqrt {\pi ^{2}+1}}-{\frac {8}{3}}={\frac {8(\pi ^{2}+1)}{3}}{\sqrt {\pi ^{2}+1}}-{\frac {8}{3}}={\frac {8(\pi ^{2}+1)^{3 \over 2}}{3}}-{\frac {8}{3}}=}
=95,562904188437929879480297191115-2,6(6)=92,896237521771263212813630524448;
čia
d
(
θ
2
+
4
)
=
2
θ
d
θ
,
d
θ
=
d
(
θ
2
+
4
)
2
θ
{\displaystyle d(\theta ^{2}+4)=2\theta \;d\theta ,\;d\theta ={\frac {d(\theta ^{2}+4)}{2\theta }}}
ir
∫
x
x
2
±
a
2
d
x
=
1
3
(
x
2
±
a
2
)
3
2
{\displaystyle \int x{\sqrt {x^{2}\pm a^{2}}}dx={\frac {1}{3}}\left(x^{2}\pm a^{2}\right)^{3 \over 2}}
arba
∫
a
x
+
b
d
x
=
(
2
b
3
a
+
2
x
3
)
a
x
+
b
.
{\displaystyle \int {\sqrt {ax+b}}dx=\left({\frac {2b}{3a}}+{\frac {2x}{3}}\right){\sqrt {ax+b}}.}
Va čia "Free Pascal" kodas:
var
a:longint;
c:real;
begin
for a:=1 to 628318531 do
c:=c+0.00000001*sqrt(sqr(sqr(a*0.00000001))+sqr(a*2.0/100000000));
writeln(c);
readln;
end.
kuris duoda atsakymą 92,8962378457359 po 16 sekundžių su 2,6 GHz procesoriumi. Optimizuotas šio kodo variantas:
var
a:longint;
c,b:real;
begin
for a:=1 to 628318531 do
c:=c+sqrt(sqr(sqr(a*0.00000001))+sqr(a*0.00000002));
b:=c*0.00000001;
writeln(b);
readln;
end.
duoda atsakymą 92,8962378457489 po 11 sekundžių su 2,6 GHz procesoriumi.
Šis kodas:
var
a:longint;
c,b:real;
begin
for a:=1 to 62831853 do
c:=c+sqrt(sqr(sqr(a*0.0000001))+sqr((sqr(a*0.0000001)-sqr((a-1)*0.0000001))/0.0000001));
b:=c*0.0000001;
writeln(b);
readln;
end.
duoda atsakymą 92,8962389233553 po dviejų sekundžių. Tikslesnė (ne daug tikslesnė, nes kaip tik
2
π
⋅
10
8
=
628318530.7179586476925286766559
{\displaystyle 2\pi \cdot 10^{8}=628318530.7179586476925286766559}
ir kur reikia apvalint ten 0) šio kodo versija:
var
a:longint;
c,b:real;
begin
for a:=1 to 628318531 do
c:=c+sqrt(sqr(sqr(a*0.00000001))+sqr((sqr(a*0.00000001)-sqr((a-1)*0.00000001))*100000000));
b:=c*0.00000001;
writeln(b);
readln;
end.
duoda atsakymą 92,8962378085099 po 15 sekundžių su 2,6 GHz procesoriumi.
Labiausiai teoriją atitinkantis kodas yra šis:
var
a:longint;
c,b:real;
begin
for a:=1 to 1000000000 do
c:=c+sqrt(sqr(sqr(a*0.0000000062831853))+sqr((sqr(a*0.0000000062831853)-sqr((a-1)*0.0000000062831853))/0.0000000062831853));
b:=c*0.0000000062831853;
writeln(b);
readln;
end.
duodantis atsakymą 92,8962373310520 po 30 sekundžių su 2,6 GHz procesoriumi. Su patikslinta
2
π
{\displaystyle 2\pi }
reikšme panaudojus kodą:
var
a:longint;
c,b:real;
begin
for a:=1 to 1000000000 do
c:=c+sqrt(sqr(sqr(a*0.000000006283185307179586))+sqr((sqr(a*0.000000006283185307179586)-sqr((a-1)*0.000000006283185307179586))/0.000000006283185307179586));
b:=c*0.000000006283185307179586;
writeln(b);
readln;
end
gauname atsakymą 92,8962376285006 po 31 sekundės su 2,6 GHz procesoriumi.
Panaudojus vietoje dalybos daugybą (
1
2
π
10
9
=
159154943.09189533576888376337251
{\displaystyle {\frac {1}{\frac {2\pi }{10^{9}}}}=159154943.09189533576888376337251}
) šiame kode:
var
a:longint;
c,b:real;
begin
for a:=1 to 1000000000 do
c:=c+sqrt(sqr(sqr(a*0.0000000062831853))+sqr((sqr(a*0.0000000062831853)-sqr((a-1)*0.0000000062831853))*159154943.0918953));
b:=c*0.0000000062831853;
writeln(b);
readln;
end.
gauname atsakymą 92,8962373100457 po 24 sekundžių su 2,6 GHz procesoriumi. Pastebime, kad kodas (dviem kodais aukščiau ir duodantis atsakymą 92,8962378085099), kuris skaičiavo 15 sekundžių turi tokį ryši su šiuo kodu: 24/15=1.6 ir 1000000000/628318531=1.59154943.
Apskaičiuokime kreivės
y
=
x
3
2
,
0
≤
x
≤
4
{\displaystyle y=x^{3 \over 2},\;0\leq x\leq 4}
lanko ilgį.
Randame
y
′
=
3
2
x
1
2
,
1
+
y
′
2
=
1
+
9
4
x
.
{\displaystyle y'={3 \over 2}x^{1 \over 2},\;{\sqrt {1+y'^{2}}}={\sqrt {1+{9 \over 4}x}}.}
Tuomet
L
=
∫
0
4
1
+
9
4
x
d
x
=
4
9
∫
0
4
(
1
+
9
4
x
)
1
2
d
(
1
+
9
4
x
)
=
4
9
⋅
2
3
(
1
+
9
4
x
)
3
2
|
0
4
=
8
27
(
10
10
−
1
)
≈
9
,
0734.
{\displaystyle L=\int _{0}^{4}{\sqrt {1+{9 \over 4}x}}dx={4 \over 9}\int _{0}^{4}(1+{9 \over 4}x)^{1 \over 2}d(1+{9 \over 4}x)={4 \over 9}\cdot {2 \over 3}(1+{9 \over 4}x)^{3 \over 2}|_{0}^{4}={8 \over 27}(10{\sqrt {10}}-1)\approx 9,0734.}
Palyginimui, atkarpos ilgis iš taško (0; 0) iki taško (4;
4
3
2
{\displaystyle 4^{3 \over 2}}
) yra pagal pitagoro teoremą:
c
=
a
2
+
b
2
=
4
2
+
(
4
3
2
)
2
=
16
+
4
3
=
80
≈
8
,
94427.
{\displaystyle c={\sqrt {a^{2}+b^{2}}}={\sqrt {4^{2}+(4^{3 \over 2})^{2}}}={\sqrt {16+4^{3}}}={\sqrt {80}}\approx 8,94427.}
Apskaičiuosime lanko ilgį pusiaukūbinės parabolės
y
=
x
3
/
2
,
{\displaystyle y=x^{3/2},}
jei
0
≤
x
≤
5.
{\displaystyle 0\leq x\leq 5.}
Iš lygties
y
=
x
3
/
2
{\displaystyle y=x^{3/2}}
randame:
y
′
=
3
2
x
1
2
.
{\displaystyle y'={3 \over 2}x^{1 \over 2}.}
Iš pirmos formulės gausime
L
=
∫
a
b
1
+
(
f
′
(
x
)
)
2
d
x
=
∫
0
5
1
+
y
′
2
d
x
=
∫
0
5
1
+
9
x
4
d
x
=
4
9
∫
0
5
1
+
9
x
4
d
(
1
+
9
x
4
)
=
{\displaystyle L=\int _{a}^{b}{\sqrt {1+(f'(x))^{2}}}dx=\int _{0}^{5}{\sqrt {1+y'^{2}}}dx=\int _{0}^{5}{\sqrt {1+{9x \over 4}}}dx={4 \over 9}\int _{0}^{5}{\sqrt {1+{9x \over 4}}}d(1+{9x \over 4})=}
=
4
9
(
1
+
9
x
4
)
3
2
3
2
|
0
5
=
8
27
(
1
+
9
x
4
)
3
2
|
0
5
=
8
27
[
(
4
4
+
45
4
)
3
2
−
(
1
+
0
)
3
2
]
=
8
27
[
(
7
2
)
3
−
1
]
=
335
27
≈
12
,
4074
;
{\displaystyle ={{4 \over 9}(1+{9x \over 4})^{3 \over 2} \over {3 \over 2}}|_{0}^{5}={8 \over 27}(1+{9x \over 4})^{3 \over 2}|_{0}^{5}={8 \over 27}[({4 \over 4}+{45 \over 4})^{3 \over 2}-(1+0)^{3 \over 2}]={8 \over 27}[({7 \over 2})^{3}-1]={335 \over 27}\approx 12,4074;}
kur
d
(
1
+
9
x
4
)
=
9
4
d
x
{\displaystyle d(1+{9x \over 4})={9 \over 4}dx}
;
d
x
=
4
9
d
(
1
+
9
x
4
)
{\displaystyle dx={4 \over 9}d(1+{9x \over 4})}
.
Palyginimui, atkarpos ilgis nuo taško (0; 0) iki taško (5;
5
3
2
{\displaystyle 5^{3 \over 2}}
) yra:
c
=
a
2
+
b
2
=
5
2
+
(
5
3
2
)
2
=
25
+
5
3
=
150
=
12
,
2474487.
{\displaystyle c={\sqrt {a^{2}+b^{2}}}={\sqrt {5^{2}+(5^{3 \over 2})^{2}}}={\sqrt {25+5^{3}}}={\sqrt {150}}=12,2474487.}
Apskaičiuosime lanko ilgį pusiaukūbinės parabolės
y
=
x
3
2
,
{\displaystyle y=x^{3 \over 2},}
jei
1
≤
x
≤
5.
{\displaystyle 1\leq x\leq 5.}
Iš lygties
y
=
x
3
/
2
{\displaystyle y=x^{3/2}}
randame:
y
′
=
(
x
3
2
)
′
=
3
2
x
1
2
.
{\displaystyle y'=(x^{3 \over 2})'={3 \over 2}x^{1 \over 2}.}
Gausime
L
=
∫
1
5
1
+
y
′
2
d
x
=
∫
1
5
1
+
(
3
x
2
)
2
d
x
=
∫
1
5
1
+
9
x
4
d
x
=
4
9
∫
1
5
1
+
9
x
4
d
(
1
+
9
x
4
)
=
{\displaystyle L=\int _{1}^{5}{\sqrt {1+y'^{2}}}dx=\int _{1}^{5}{\sqrt {1+({3{\sqrt {x}} \over 2})^{2}}}dx=\int _{1}^{5}{\sqrt {1+{9x \over 4}}}dx={4 \over 9}\int _{1}^{5}{\sqrt {1+{9x \over 4}}}d(1+{9x \over 4})=}
=
4
9
⋅
(
1
+
9
x
4
)
3
2
3
2
|
1
5
=
8
27
(
1
+
9
x
4
)
3
2
|
1
5
=
8
27
[
(
4
4
+
45
4
)
3
2
−
(
1
+
9
4
)
3
2
]
=
8
27
[
(
7
2
)
3
−
(
1
+
2
,
25
)
3
]
=
{\displaystyle ={4 \over 9}\cdot {(1+{9x \over 4})^{3 \over 2} \over {3 \over 2}}|_{1}^{5}={8 \over 27}(1+{9x \over 4})^{3 \over 2}|_{1}^{5}={8 \over 27}[({4 \over 4}+{45 \over 4})^{3 \over 2}-(1+{9 \over 4})^{3 \over 2}]={8 \over 27}[({7 \over 2})^{3}-{\sqrt {(1+2,25)^{3}}}]=}
=
8
27
⋅
343
8
−
8
27
⋅
34
,
328125
≈
12
,
7037037
−
1
,
73600617
≈
10
,
96769753
;
{\displaystyle ={8 \over 27}\cdot {343 \over 8}-{8 \over 27}\cdot {\sqrt {34,328125}}\approx 12,7037037-1,73600617\approx 10,96769753;}
kur
d
(
1
+
9
x
4
)
=
9
4
d
x
{\displaystyle d(1+{9x \over 4})={9 \over 4}dx}
;
d
x
=
4
9
d
(
1
+
9
x
4
)
{\displaystyle dx={4 \over 9}d(1+{9x \over 4})}
.
Palyginimui, linijos ilgis nuo taško (1; 1) iki taško (5;
5
3
/
2
{\displaystyle 5^{3/2}}
) yra
c
=
(
5
−
1
)
2
+
(
5
3
/
2
−
1
)
2
=
16
+
(
125
−
1
)
2
=
16
+
10
,
18033989
2
=
119
,
6393202
=
{\displaystyle c={\sqrt {(5-1)^{2}+(5^{3/2}-1)^{2}}}={\sqrt {16+({\sqrt {125}}-1)^{2}}}={\sqrt {16+10,18033989^{2}}}={\sqrt {119,6393202}}=}
=
10
,
093797606.
{\displaystyle =10,093797606.}
Apskaičiuosime parabolės
y
=
x
2
{\displaystyle y=x^{2}}
lanko ilgį, kai
0
≤
x
≤
5.
{\displaystyle 0\leq x\leq 5.}
Randame
y
′
=
(
x
2
)
′
=
2
x
{\displaystyle y'=(x^{2})'=2x}
. Gauname
L
=
∫
0
5
1
+
(
2
x
)
2
d
x
=
∫
0
5
1
+
4
x
2
d
x
=
1
4
(
2
x
4
x
2
+
1
+
arsinh
(
2
x
)
)
|
0
5
=
{\displaystyle L=\int _{0}^{5}{\sqrt {1+(2x)^{2}}}dx=\int _{0}^{5}{\sqrt {1+4x^{2}}}dx={1 \over 4}(2x{\sqrt {4x^{2}+1}}+\operatorname {arsinh} (2x))|_{0}^{5}=}
=
1
4
(
2
⋅
5
4
⋅
5
2
+
1
+
arsinh
(
2
⋅
5
)
)
−
1
4
(
2
⋅
0
⋅
4
⋅
0
2
+
1
+
arsinh
(
2
⋅
0
)
)
=
{\displaystyle ={1 \over 4}(2\cdot 5{\sqrt {4\cdot 5^{2}+1}}+\operatorname {arsinh} (2\cdot 5))-{1 \over 4}(2\cdot 0\cdot {\sqrt {4\cdot 0^{2}+1}}+\operatorname {arsinh} (2\cdot 0))=}
=
1
4
(
10
4
⋅
25
+
1
+
arsinh
(
10
)
)
−
1
4
⋅
(
0
+
0
)
=
1
4
(
10
101
+
ln
(
10
+
10
2
+
1
)
)
−
0
=
{\displaystyle ={1 \over 4}(10{\sqrt {4\cdot 25+1}}+\operatorname {arsinh} (10))-{1 \over 4}\cdot (0+0)={1 \over 4}(10{\sqrt {101}}+\ln \left(10+{\sqrt {10^{2}+1}}\right))-0=}
=
1
4
(
10
101
+
ln
(
10
+
101
)
)
=
{\displaystyle ={\frac {1}{4}}(10{\sqrt {101}}+\ln(10+{\sqrt {101}}))=}
=
1
4
(
10
⋅
10.4987562
+
ln
(
20
,
04987562
)
)
=
{\displaystyle ={1 \over 4}(10\cdot 10.4987562+\ln \left(20,04987562\right))=}
=
1
4
(
100.498756
+
2.99822295
)
=
103.4969792
4
=
25.87424479
,
{\displaystyle ={1 \over 4}(100.498756+2.99822295)={\frac {103.4969792}{4}}=25.87424479,}
čia
arsinh
x
=
ln
(
x
+
x
2
+
1
)
.
{\displaystyle \operatorname {arsinh} \,x=\ln \left(x+{\sqrt {x^{2}+1}}\right).}
ln
(
x
+
x
2
+
1
)
=
ln
(
10
+
10
2
+
1
)
=
ln
(
10
+
101
)
=
ln
(
10
+
10.04987562
)
=
2.99822295.
{\displaystyle \ln \left(x+{\sqrt {x^{2}+1}}\right)=\ln \left(10+{\sqrt {10^{2}+1}}\right)=\ln \left(10+{\sqrt {101}}\right)=\ln \left(10+10.04987562\right)=2.99822295.}
Iš kompiuterio kalkuliatoriaus reikšmės (hiperbolinio arksinuso):
arsinh
10
=
2
,
9982229502979697388465955375965
;
{\displaystyle \operatorname {arsinh} \,10=2,9982229502979697388465955375965;}
arsinh
0
=
0.
{\displaystyle \operatorname {arsinh} \,0=0.}
Palyginimui, linijos ilgis nuo taško (0; 0) iki taško (5; 25) yra:
c
=
a
2
+
b
2
=
5
2
+
25
2
=
25
+
625
=
650
=
25.49509757.
{\displaystyle c={\sqrt {a^{2}+b^{2}}}={\sqrt {5^{2}+25^{2}}}={\sqrt {25+625}}={\sqrt {650}}=25.49509757.}
Apskaičiuosime parabolės
y
=
x
2
{\displaystyle y=x^{2}}
lanko ilgį, kai
1
≤
x
≤
5.
{\displaystyle 1\leq x\leq 5.}
Randame
y
′
=
(
x
2
)
′
=
2
x
{\displaystyle y'=(x^{2})'=2x}
. Gauname
L
=
∫
1
5
1
+
(
2
x
)
2
d
x
=
∫
1
5
1
+
4
x
2
d
x
=
1
4
(
2
x
4
x
2
+
1
+
sinh
−
1
(
2
x
)
)
|
1
5
=
{\displaystyle L=\int _{1}^{5}{\sqrt {1+(2x)^{2}}}dx=\int _{1}^{5}{\sqrt {1+4x^{2}}}dx={1 \over 4}(2x{\sqrt {4x^{2}+1}}+\sinh ^{-1}(2x))|_{1}^{5}=}
=
1
4
(
2
x
4
x
2
+
1
+
arsinh
(
2
x
)
)
|
1
5
=
{\displaystyle ={1 \over 4}(2x{\sqrt {4x^{2}+1}}+\operatorname {arsinh} \,(2x))|_{1}^{5}=}
=
1
4
(
10
4
⋅
25
+
1
+
arsinh
(
10
)
)
−
1
4
(
2
4
⋅
1
+
1
+
arsinh
(
2
)
)
=
{\displaystyle ={1 \over 4}(10{\sqrt {4\cdot 25+1}}+\operatorname {arsinh} \,(10))-{1 \over 4}(2{\sqrt {4\cdot 1+1}}+\operatorname {arsinh} \,(2))=}
=
1
4
(
10
101
+
ln
(
10
+
10
2
+
1
)
)
−
1
4
(
2
5
+
ln
(
2
+
2
2
+
1
)
)
=
{\displaystyle ={1 \over 4}(10{\sqrt {101}}+\ln \left(10+{\sqrt {10^{2}+1}}\right))-{1 \over 4}(2{\sqrt {5}}+\ln \left(2+{\sqrt {2^{2}+1}}\right))=}
=
1
4
(
10
101
+
ln
(
10
+
101
)
)
−
1
4
(
2
5
+
ln
(
2
+
5
)
)
≈
{\displaystyle ={1 \over 4}(10{\sqrt {101}}+\ln \left(10+{\sqrt {101}}\right))-{1 \over 4}(2{\sqrt {5}}+\ln \left(2+{\sqrt {5}}\right))\approx }
≈
1
4
(
100
,
4987562
+
ln
(
20
,
04987562
)
)
−
1
4
(
4
,
472135955
+
ln
(
4
,
236067978
)
)
≈
{\displaystyle \approx {1 \over 4}(100,4987562+\ln \left(20,04987562\right))-{1 \over 4}(4,472135955+\ln \left(4,236067978\right))\approx }
≈
1
4
(
100
,
4987562
+
2.99822295
)
−
1
4
(
4
,
472135955
+
1.44363547
)
=
{\displaystyle \approx {1 \over 4}(100,4987562+2.99822295)-{1 \over 4}(4,472135955+1.44363547)=}
=
25
,
87424479
−
1
,
478942858
=
24.39530193
,
{\displaystyle =25,87424479-1,478942858=24.39530193,}
čia
arsinh
x
=
ln
(
x
+
x
2
+
1
)
.
{\displaystyle \operatorname {arsinh} \,x=\ln \left(x+{\sqrt {x^{2}+1}}\right).}
Iš kompiuterio kalkuliatoriaus reikšmės (hiperbolinio arksinuso):
arsinh
10
=
2
,
9982229502979697388465955375965
;
{\displaystyle \operatorname {arsinh} \,10=2,9982229502979697388465955375965;}
arsinh
2
=
1
,
44363547517881.
{\displaystyle \operatorname {arsinh} \,2=1,44363547517881.}
Palyginimui, tiesės ilgis nuo taško (1; 1) iki taško (5; 25) yra:
c
=
a
2
+
b
2
=
(
5
−
1
)
2
+
(
25
−
1
)
2
=
4
2
+
24
2
=
16
+
576
=
592
=
24.33105012.
{\displaystyle c={\sqrt {a^{2}+b^{2}}}={\sqrt {(5-1)^{2}+(25-1)^{2}}}={\sqrt {4^{2}+24^{2}}}={\sqrt {16+576}}={\sqrt {592}}=24.33105012.}
Čia taip išintegravo Wolfram Research integratorius, kad
∫
1
+
4
x
2
d
x
=
1
4
(
2
x
4
x
2
+
1
+
sinh
−
1
(
2
x
)
)
{\displaystyle \int {\sqrt {1+4x^{2}}}dx={1 \over 4}(2x{\sqrt {4x^{2}+1}}+\sinh ^{-1}(2x))}
. Štai nuoroda: http://integrals.wolfram.com/index.jsp?expr=%281%2B4x%5E2%29%5E%281%2F2%29&random=false .
Toks būdas neteisingas:
L
=
∫
1
5
1
+
(
2
x
)
2
d
x
=
∫
1
5
1
+
4
x
2
d
x
=
1
4
(
2
x
4
x
2
+
1
+
sinh
−
1
(
2
x
)
)
|
1
5
=
{\displaystyle L=\int _{1}^{5}{\sqrt {1+(2x)^{2}}}dx=\int _{1}^{5}{\sqrt {1+4x^{2}}}dx={1 \over 4}(2x{\sqrt {4x^{2}+1}}+\sinh ^{-1}(2x))|_{1}^{5}=}
=
1
4
(
2
x
4
x
2
+
1
+
(
e
2
x
−
e
−
2
x
2
)
−
1
)
|
1
5
=
1
4
(
2
x
4
x
2
+
1
+
2
e
2
x
−
e
−
2
x
)
|
1
5
=
{\displaystyle ={1 \over 4}(2x{\sqrt {4x^{2}+1}}+({e^{2x}-e^{-2x} \over 2})^{-1})|_{1}^{5}={1 \over 4}(2x{\sqrt {4x^{2}+1}}+{2 \over e^{2x}-e^{-2x}})|_{1}^{5}=}
=
1
4
(
10
100
+
1
+
2
e
10
−
e
−
10
)
−
1
4
(
2
4
+
1
+
2
e
2
−
e
−
2
)
≈
{\displaystyle ={1 \over 4}(10{\sqrt {100+1}}+{2 \over e^{10}-e^{-10}})-{1 \over 4}(2{\sqrt {4+1}}+{2 \over e^{2}-e^{-2}})\approx }
≈
25
,
12471175
−
1
4
(
4
,
472135955
+
2
7
,
389056099
−
0
,
135335283
)
≈
{\displaystyle \approx 25,12471175-{1 \over 4}(4,472135955+{2 \over 7,389056099-0,135335283})\approx }
≈
25
,
12471175
−
1
4
(
4
,
472135955
+
2
7
,
253720816
)
≈
{\displaystyle \approx 25,12471175-{1 \over 4}(4,472135955+{2 \over 7,253720816})\approx }
≈
25
,
12471175
−
1
4
(
4
,
472135955
+
0
,
275720564
)
≈
{\displaystyle \approx 25,12471175-{1 \over 4}(4,472135955+0,275720564)\approx }
≈
25
,
12471175
−
1
,
18696413
≈
23
,
93774762.
{\displaystyle \approx 25,12471175-1,18696413\approx 23,93774762.}
Patikriname atsakymą kitu budu:
L
=
∫
1
5
1
+
y
′
2
d
x
=
∫
1
5
1
+
(
2
x
)
2
d
x
=
∫
1
5
1
+
4
x
2
d
x
=
4
∫
1
5
1
4
+
x
2
d
x
=
{\displaystyle L=\int _{1}^{5}{\sqrt {1+y'^{2}}}dx=\int _{1}^{5}{\sqrt {1+(2x)^{2}}}dx=\int _{1}^{5}{\sqrt {1+4x^{2}}}dx={\sqrt {4}}\int _{1}^{5}{\sqrt {{1 \over 4}+x^{2}}}dx=}
=
2
(
x
2
1
4
+
x
2
+
1
4
2
ln
|
x
+
x
2
+
1
4
|
)
|
1
5
=
{\displaystyle =2({x \over 2}{\sqrt {{1 \over 4}+x^{2}}}+{\frac {1 \over 4}{2}}\ln \left|x+{\sqrt {x^{2}+{1 \over 4}}}\right|)|_{1}^{5}=}
=
2
(
5
2
0
,
25
+
5
2
+
0
,
25
2
ln
|
5
+
5
2
+
0
,
25
|
)
−
2
(
1
2
0
,
25
+
1
2
+
0
,
25
2
ln
|
1
+
1
2
+
0
,
25
|
)
=
{\displaystyle =2({5 \over 2}{\sqrt {0,25+5^{2}}}+{\frac {0,25}{2}}\ln \left|5+{\sqrt {5^{2}+0,25}}\right|)-2({1 \over 2}{\sqrt {0,25+1^{2}}}+{\frac {0,25}{2}}\ln \left|1+{\sqrt {1^{2}+0,25}}\right|)=}
=
2
(
2
,
5
25
,
25
+
0
,
125
ln
|
5
+
25
,
25
|
)
−
2
(
1
2
1
,
25
+
0
,
125
ln
|
1
+
1
,
25
|
)
≈
{\displaystyle =2(2,5{\sqrt {25,25}}+0,125\ln \left|5+{\sqrt {25,25}}\right|)-2({1 \over 2}{\sqrt {1,25}}+0,125\ln \left|1+{\sqrt {1,25}}\right|)\approx }
≈
2
(
2
,
5
⋅
5
,
024937811
+
0
,
125
ln
|
5
+
5
,
024937811
|
)
−
2
(
1
,
118033989
2
+
0
,
125
⋅
ln
|
1
+
1
,
118033989
|
)
≈
{\displaystyle \approx 2(2,5\cdot 5,024937811+0,125\ln |5+5,024937811|)-2({1,118033989 \over 2}+0,125\cdot \ln |1+1,118033989|)\approx }
≈
2
(
12
,
56234453
+
0
,
125
⋅
2
,
30507577
)
−
2
(
0
,
559016994
+
0
,
125
⋅
0
,
750488294
)
=
{\displaystyle \approx 2(12,56234453+0,125\cdot 2,30507577)-2(0,559016994+0,125\cdot 0,750488294)=}
=
2
(
12
,
56234453
+
0
,
288134471
)
−
2
(
0
,
559016994
+
0
,
093811036
)
=
25
,
700958
−
1
,
30565606
=
24
,
39530194.
{\displaystyle =2(12,56234453+0,288134471)-2(0,559016994+0,093811036)=25,700958-1,30565606=24,39530194.}
Apskaičiuosime parabolės
y
=
x
2
{\displaystyle y=x^{2}}
lanko ilgį, kai
0
≤
x
≤
4.
{\displaystyle 0\leq x\leq 4.}
Randame
y
′
=
(
x
2
)
′
=
2
x
{\displaystyle y'=(x^{2})'=2x}
. Gauname
L
=
∫
0
4
1
+
(
2
x
)
2
d
x
=
∫
0
4
1
+
4
x
2
d
x
=
1
4
(
2
x
4
x
2
+
1
+
arsinh
(
2
x
)
)
|
0
4
=
{\displaystyle L=\int _{0}^{4}{\sqrt {1+(2x)^{2}}}dx=\int _{0}^{4}{\sqrt {1+4x^{2}}}dx={1 \over 4}(2x{\sqrt {4x^{2}+1}}+\operatorname {arsinh} (2x))|_{0}^{4}=}
=
1
4
(
2
⋅
4
4
⋅
4
2
+
1
+
arsinh
(
2
⋅
4
)
)
−
1
4
(
2
⋅
0
⋅
4
⋅
0
2
+
1
+
arsinh
(
2
⋅
0
)
)
=
{\displaystyle ={1 \over 4}(2\cdot 4{\sqrt {4\cdot 4^{2}+1}}+\operatorname {arsinh} (2\cdot 4))-{1 \over 4}(2\cdot 0\cdot {\sqrt {4\cdot 0^{2}+1}}+\operatorname {arsinh} (2\cdot 0))=}
=
1
4
(
8
4
⋅
16
+
1
+
arsinh
(
8
)
)
−
1
4
⋅
(
0
+
0
)
=
1
4
(
8
64
+
1
+
ln
(
8
+
8
2
+
1
)
)
−
0
=
{\displaystyle ={1 \over 4}(8{\sqrt {4\cdot 16+1}}+\operatorname {arsinh} (8))-{1 \over 4}\cdot (0+0)={1 \over 4}(8{\sqrt {64+1}}+\ln \left(8+{\sqrt {8^{2}+1}}\right))-0=}
=
1
4
(
8
65
+
ln
(
8
+
65
)
)
=
1
4
(
8
⋅
8.062257748
+
ln
(
8
+
8.062257748
)
)
=
{\displaystyle ={1 \over 4}(8{\sqrt {65}}+\ln \left(8+{\sqrt {65}}\right))={1 \over 4}(8\cdot 8.062257748+\ln \left(8+8.062257748\right))=}
=
1
4
(
64.49806199
+
ln
(
16.06225775
)
)
=
1
4
(
64.49806199
+
2.776472281
)
=
67.27453427
4
=
16.81863357
,
{\displaystyle ={1 \over 4}(64.49806199+\ln(16.06225775))={1 \over 4}(64.49806199+2.776472281)={\frac {67.27453427}{4}}=16.81863357,}
čia
arsinh
x
=
ln
(
x
+
x
2
+
1
)
.
{\displaystyle \operatorname {arsinh} \,x=\ln \left(x+{\sqrt {x^{2}+1}}\right).}
ln
(
x
+
x
2
+
1
)
=
ln
(
8
+
8
2
+
1
)
=
ln
(
8
+
65
)
=
ln
(
8
+
8.062257748
)
=
ln
(
16.06225775
)
=
2.776472281.
{\displaystyle \ln(x+{\sqrt {x^{2}+1}})=\ln(8+{\sqrt {8^{2}+1}})=\ln(8+{\sqrt {65}})=\ln(8+8.062257748)=\ln(16.06225775)=2.776472281.}
Iš kompiuterio kalkuliatoriaus reikšmės (hiperbolinio arksinuso):
arsinh
8
=
2
,
7764722807237176735308040270285
;
{\displaystyle \operatorname {arsinh} \,8=2,7764722807237176735308040270285;}
arsinh
0
=
0.
{\displaystyle \operatorname {arsinh} \,0=0.}
Apskaičiuosime parabolės
y
=
x
2
{\displaystyle y=x^{2}}
lanko ilgį, kai
0
≤
x
≤
4.
{\displaystyle 0\leq x\leq 4.}
Randame
y
′
=
(
x
2
)
′
=
2
x
{\displaystyle y'=(x^{2})'=2x}
. Pasinaudodami integralų lentele
∫
x
2
+
a
d
x
=
x
2
a
+
x
2
+
a
2
ln
|
x
+
x
2
+
a
|
{\displaystyle \int {\sqrt {x^{2}+a}}\;{\mathsf {d}}x={\frac {x}{2}}{\sqrt {a+x^{2}}}+{\frac {a}{2}}\ln \left|x+{\sqrt {x^{2}+a}}\right|}
, gauname
L
=
∫
0
4
1
+
y
′
2
d
x
=
∫
0
4
1
+
(
2
x
)
2
d
x
=
∫
0
4
1
+
4
x
2
d
x
=
4
∫
0
4
1
4
+
x
2
d
x
=
{\displaystyle L=\int _{0}^{4}{\sqrt {1+y'^{2}}}dx=\int _{0}^{4}{\sqrt {1+(2x)^{2}}}dx=\int _{0}^{4}{\sqrt {1+4x^{2}}}dx={\sqrt {4}}\int _{0}^{4}{\sqrt {{1 \over 4}+x^{2}}}dx=}
=
2
(
x
2
0
,
25
+
x
2
+
0
,
25
2
ln
|
x
+
x
2
+
0
,
25
|
)
|
0
4
=
{\displaystyle =2({x \over 2}{\sqrt {0,25+x^{2}}}+{\frac {0,25}{2}}\ln \left|x+{\sqrt {x^{2}+0,25}}\right|)|_{0}^{4}=}
=
2
(
4
2
0
,
25
+
4
2
+
0
,
25
2
ln
|
4
+
4
2
+
0
,
25
|
)
−
2
(
0
2
0
,
25
+
0
2
+
0
,
25
2
ln
|
0
+
0
2
+
0
,
25
|
)
=
{\displaystyle =2({4 \over 2}{\sqrt {0,25+4^{2}}}+{\frac {0,25}{2}}\ln \left|4+{\sqrt {4^{2}+0,25}}\right|)-2({0 \over 2}{\sqrt {0,25+0^{2}}}+{\frac {0,25}{2}}\ln \left|0+{\sqrt {0^{2}+0,25}}\right|)=}
=
2
(
2
16
,
25
+
0
,
125
ln
|
4
+
16
,
25
|
)
−
2
(
0
+
0
,
125
ln
|
0
+
0
,
25
|
)
=
{\displaystyle =2(2{\sqrt {16,25}}+0,125\ln \left|4+{\sqrt {16,25}}\right|)-2(0+0,125\ln \left|0+{\sqrt {0,25}}\right|)=}
≈
2
(
2
⋅
4
,
031128874
+
0
,
125
ln
|
8
,
031128874
|
)
−
2
(
0
,
125
⋅
ln
|
0
,
5
|
)
≈
{\displaystyle \approx 2(2\cdot 4,031128874+0,125\ln |8,031128874|)-2(0,125\cdot \ln |0,5|)\approx }
≈
2
(
8
,
062257748
+
0
,
125
⋅
2
,
0833251
)
−
2
(
0
,
125
⋅
(
−
0
,
69314718
)
)
=
{\displaystyle \approx 2(8,062257748+0,125\cdot 2,0833251)-2(0,125\cdot (-0,69314718))=}
=
2
(
8
,
062257748
+
0
,
260415637
)
−
2
(
−
0
,
086643397
)
=
16
,
64534677
+
0
,
173286795
=
16
,
81863357.
{\displaystyle =2(8,062257748+0,260415637)-2(-0,086643397)=16,64534677+0,173286795=16,81863357.}
Palyginimui, tiesios linijos ilgis nuo taško (0; 0) iki taško (4; 16) yra
c
=
x
2
+
y
2
=
4
2
+
16
2
=
272
=
16
,
4924225.
{\displaystyle c={\sqrt {x^{2}+y^{2}}}={\sqrt {4^{2}+16^{2}}}={\sqrt {272}}=16,4924225.}
Patikrinsime parbolės lanko ilgį padalindami parabolės šaką į 10 atkarpų-tiesių, kai 0<x<4. Kiekvienos atkarpos projekcijos į Ox ašį ilgis yra 0,4. Todėl reikia gauti visas x reikšmes:
x
0
=
0
;
{\displaystyle x_{0}=0;}
x
1
=
0.4
;
{\displaystyle x_{1}=0.4;}
x
2
=
2
⋅
0.4
=
0.8
;
{\displaystyle x_{2}=2\cdot 0.4=0.8;}
x
3
=
3
⋅
0.4
=
1.2
;
{\displaystyle x_{3}=3\cdot 0.4=1.2;}
x
4
=
4
⋅
0.4
=
1.6
;
{\displaystyle x_{4}=4\cdot 0.4=1.6;}
x
5
=
5
⋅
0.4
=
2
;
{\displaystyle x_{5}=5\cdot 0.4=2;}
x
6
=
6
⋅
0.4
=
2.4
;
{\displaystyle x_{6}=6\cdot 0.4=2.4;}
x
7
=
7
⋅
0.4
=
2.8
;
{\displaystyle x_{7}=7\cdot 0.4=2.8;}
x
8
=
8
⋅
0.4
=
3.2
;
{\displaystyle x_{8}=8\cdot 0.4=3.2;}
x
9
=
9
⋅
0.4
=
3.6
;
{\displaystyle x_{9}=9\cdot 0.4=3.6;}
x
10
=
10
⋅
0.4
=
4.
{\displaystyle x_{10}=10\cdot 0.4=4.}
Dabar toliau reikia surasti visas y reikšmes, įstačius x reikšmes:
y
0
=
x
0
2
=
0
2
=
0
;
{\displaystyle y_{0}=x_{0}^{2}=0^{2}=0;}
y
1
=
x
1
2
=
0.4
2
=
0.16
;
{\displaystyle y_{1}=x_{1}^{2}=0.4^{2}=0.16;}
y
2
=
x
2
2
=
0.8
2
=
0.64
;
{\displaystyle y_{2}=x_{2}^{2}=0.8^{2}=0.64;}
y
3
=
x
3
2
=
1.2
2
=
1.44
;
{\displaystyle y_{3}=x_{3}^{2}=1.2^{2}=1.44;}
y
4
=
x
4
2
=
1.6
2
=
2.56
;
{\displaystyle y_{4}=x_{4}^{2}=1.6^{2}=2.56;}
y
5
=
x
5
2
=
2
2
=
4
;
{\displaystyle y_{5}=x_{5}^{2}=2^{2}=4;}
y
6
=
x
6
2
=
2.4
2
=
5.76
;
{\displaystyle y_{6}=x_{6}^{2}=2.4^{2}=5.76;}
y
7
=
x
7
2
=
2.8
2
=
7.84
;
{\displaystyle y_{7}=x_{7}^{2}=2.8^{2}=7.84;}
y
8
=
x
8
2
=
3.2
2
=
10.24
;
{\displaystyle y_{8}=x_{8}^{2}=3.2^{2}=10.24;}
y
9
=
x
9
2
=
3.6
2
=
12.96
;
{\displaystyle y_{9}=x_{9}^{2}=3.6^{2}=12.96;}
y
10
=
x
10
2
=
4
2
=
16.
{\displaystyle y_{10}=x_{10}^{2}=4^{2}=16.}
Dabar belieka surasti atkarpu ilgius kaip nuo taško (0; 0) iki taško (0,4; 0,16); nuo taško (0,4; 0,16) iki (0,8; 0,64) ir taip toliau:
a
1
=
(
x
1
−
x
0
)
2
+
(
y
1
−
y
0
)
2
=
(
0.4
−
0
)
2
+
(
0.16
−
0
)
2
=
0.16
+
0.0256
=
0.1856
=
0.430813184
;
{\displaystyle a_{1}={\sqrt {(x_{1}-x_{0})^{2}+(y_{1}-y_{0})^{2}}}={\sqrt {(0.4-0)^{2}+(0.16-0)^{2}}}={\sqrt {0.16+0.0256}}={\sqrt {0.1856}}=0.430813184;}
a
2
=
(
x
2
−
x
1
)
2
+
(
y
2
−
y
1
)
2
=
(
0.8
−
0.4
)
2
+
(
0.64
−
0.16
)
2
=
0.16
+
0.2304
=
0.3904
=
0.624819974
;
{\displaystyle a_{2}={\sqrt {(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}}={\sqrt {(0.8-0.4)^{2}+(0.64-0.16)^{2}}}={\sqrt {0.16+0.2304}}={\sqrt {0.3904}}=0.624819974;}
a
3
=
(
x
3
−
x
2
)
2
+
(
y
3
−
y
2
)
2
=
(
1.2
−
0.8
)
2
+
(
1.44
−
0.64
)
2
=
0.16
+
0.64
=
0.8
=
0.894427191
;
{\displaystyle a_{3}={\sqrt {(x_{3}-x_{2})^{2}+(y_{3}-y_{2})^{2}}}={\sqrt {(1.2-0.8)^{2}+(1.44-0.64)^{2}}}={\sqrt {0.16+0.64}}={\sqrt {0.8}}=0.894427191;}
a
4
=
(
x
4
−
x
3
)
2
+
(
y
4
−
y
3
)
2
=
(
1.6
−
1.2
)
2
+
(
2.56
−
1.44
)
2
=
0.16
+
1.2544
=
1.4144
=
1.1892855
;
{\displaystyle a_{4}={\sqrt {(x_{4}-x_{3})^{2}+(y_{4}-y_{3})^{2}}}={\sqrt {(1.6-1.2)^{2}+(2.56-1.44)^{2}}}={\sqrt {0.16+1.2544}}={\sqrt {1.4144}}=1.1892855;}
a
5
=
(
x
5
−
x
4
)
2
+
(
y
5
−
y
4
)
2
=
(
2
−
1.6
)
2
+
(
4
−
2.56
)
2
=
0.16
+
2.0736
=
2.2336
=
1.494523335
;
{\displaystyle a_{5}={\sqrt {(x_{5}-x_{4})^{2}+(y_{5}-y_{4})^{2}}}={\sqrt {(2-1.6)^{2}+(4-2.56)^{2}}}={\sqrt {0.16+2.0736}}={\sqrt {2.2336}}=1.494523335;}
a
6
=
(
x
6
−
x
5
)
2
+
(
y
6
−
y
5
)
2
=
(
2.4
−
2
)
2
+
(
5.76
−
4
)
2
=
0.16
+
3.0976
=
3.2576
=
1.804882268
;
{\displaystyle a_{6}={\sqrt {(x_{6}-x_{5})^{2}+(y_{6}-y_{5})^{2}}}={\sqrt {(2.4-2)^{2}+(5.76-4)^{2}}}={\sqrt {0.16+3.0976}}={\sqrt {3.2576}}=1.804882268;}
a
7
=
(
x
7
−
x
6
)
2
+
(
y
7
−
y
6
)
2
=
(
2.8
−
2.4
)
2
+
(
7.84
−
5.76
)
2
=
0.16
+
4.3264
=
4.4864
=
2.118112367
;
{\displaystyle a_{7}={\sqrt {(x_{7}-x_{6})^{2}+(y_{7}-y_{6})^{2}}}={\sqrt {(2.8-2.4)^{2}+(7.84-5.76)^{2}}}={\sqrt {0.16+4.3264}}={\sqrt {4.4864}}=2.118112367;}
a
8
=
(
x
8
−
x
7
)
2
+
(
y
8
−
y
7
)
2
=
(
3.2
−
2.8
)
2
+
(
10.24
−
7.84
)
2
=
0.16
+
5.76
=
5.92
=
2.433105012
;
{\displaystyle a_{8}={\sqrt {(x_{8}-x_{7})^{2}+(y_{8}-y_{7})^{2}}}={\sqrt {(3.2-2.8)^{2}+(10.24-7.84)^{2}}}={\sqrt {0.16+5.76}}={\sqrt {5.92}}=2.433105012;}
a
9
=
(
x
9
−
x
8
)
2
+
(
y
9
−
y
8
)
2
=
(
3.6
−
3.2
)
2
+
(
12.96
−
10.24
)
2
=
0.16
+
7.3984
=
7.5584
=
2.749254444
;
{\displaystyle a_{9}={\sqrt {(x_{9}-x_{8})^{2}+(y_{9}-y_{8})^{2}}}={\sqrt {(3.6-3.2)^{2}+(12.96-10.24)^{2}}}={\sqrt {0.16+7.3984}}={\sqrt {7.5584}}=2.749254444;}
a
10
=
(
x
10
−
x
9
)
2
+
(
y
10
−
y
9
)
2
=
(
4
−
3.6
)
2
+
(
16
−
12.96
)
2
=
0.16
+
9.2416
=
9.4016
=
3.066202863.
{\displaystyle a_{10}={\sqrt {(x_{10}-x_{9})^{2}+(y_{10}-y_{9})^{2}}}={\sqrt {(4-3.6)^{2}+(16-12.96)^{2}}}={\sqrt {0.16+9.2416}}={\sqrt {9.4016}}=3.066202863.}
Toliau reikia sudėti visų atkarpų ilgį, kad gauti parabolės šakos ilgį, kai x kinta nuo 0 iki 4. Gauname:
L
=
a
1
+
a
2
+
a
3
+
a
4
+
a
5
+
a
6
+
a
7
+
a
8
+
a
9
+
a
10
=
{\displaystyle L=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7}+a_{8}+a_{9}+a_{10}=}
=
0.430813184
+
0.624819974
+
0.894427191
+
1.1892855
+
1.494523335
+
1.804882268
+
2.118112367
+
2.433105012
+
2.749254444
+
3.066202863
=
16.80542614.
{\displaystyle =0.430813184+0.624819974+0.894427191+1.1892855+1.494523335+1.804882268+2.118112367+2.433105012+2.749254444+3.066202863=16.80542614.}
Padalinus į daugiau dalių atsakymas taptų panašesnis į atsakymą gautą integravimo budu.
Apskaičiuosime parabolės
y
=
x
2
{\displaystyle y=x^{2}}
lanko ilgį, kai
1
≤
x
≤
4.
{\displaystyle 1\leq x\leq 4.}
Randame
y
′
=
(
x
2
)
′
=
2
x
{\displaystyle y'=(x^{2})'=2x}
. Pasinaudodami integralų lentele gauname
L
=
∫
1
4
1
+
y
′
2
d
x
=
∫
1
4
1
+
(
2
x
)
2
d
x
=
∫
1
4
1
+
4
x
2
d
x
=
4
∫
1
4
1
4
+
x
2
d
x
=
{\displaystyle L=\int _{1}^{4}{\sqrt {1+y'^{2}}}dx=\int _{1}^{4}{\sqrt {1+(2x)^{2}}}dx=\int _{1}^{4}{\sqrt {1+4x^{2}}}dx={\sqrt {4}}\int _{1}^{4}{\sqrt {{1 \over 4}+x^{2}}}dx=}
=
2
(
x
2
0
,
25
+
x
2
+
0
,
25
2
ln
|
x
+
x
2
+
0
,
25
|
)
|
1
4
=
{\displaystyle =2({x \over 2}{\sqrt {0,25+x^{2}}}+{\frac {0,25}{2}}\ln \left|x+{\sqrt {x^{2}+0,25}}\right|)|_{1}^{4}=}
=
2
(
4
2
0
,
25
+
4
2
+
0
,
25
2
ln
|
4
+
4
2
+
0
,
25
|
)
−
2
(
1
2
0
,
25
+
1
2
+
0
,
25
2
ln
|
1
+
1
2
+
0
,
25
|
)
=
{\displaystyle =2({4 \over 2}{\sqrt {0,25+4^{2}}}+{\frac {0,25}{2}}\ln \left|4+{\sqrt {4^{2}+0,25}}\right|)-2({1 \over 2}{\sqrt {0,25+1^{2}}}+{\frac {0,25}{2}}\ln \left|1+{\sqrt {1^{2}+0,25}}\right|)=}
=
2
(
2
16
,
25
+
0
,
125
ln
|
4
+
16
,
25
|
)
−
2
(
1
2
1
,
25
+
0
,
125
ln
|
1
+
1
,
25
|
)
=
{\displaystyle =2(2{\sqrt {16,25}}+0,125\ln \left|4+{\sqrt {16,25}}\right|)-2({1 \over 2}{\sqrt {1,25}}+0,125\ln \left|1+{\sqrt {1,25}}\right|)=}
≈
2
(
2
⋅
4
,
031128874
+
0
,
125
ln
|
8
,
031128874
|
)
−
(
1
,
118033989
+
0
,
25
⋅
ln
|
1
+
1
,
118033989
|
)
≈
{\displaystyle \approx 2(2\cdot 4,031128874+0,125\ln \left|8,031128874\right|)-(1,118033989+0,25\cdot \ln \left|1+1,118033989\right|)\approx }
≈
2
(
8
,
062257748
+
0
,
125
⋅
2
,
0833251
)
−
(
1
,
118033989
+
0
,
25
⋅
0
,
750488294
)
=
{\displaystyle \approx 2(8,062257748+0,125\cdot 2,0833251)-(1,118033989+0,25\cdot 0,750488294)=}
=
2
(
8
,
062257748
+
0
,
260415637
)
−
(
1
,
118033989
+
0
,
187622073
)
=
16
,
64534677
−
1
,
305656063
=
15
,
33969071.
{\displaystyle =2(8,062257748+0,260415637)-(1,118033989+0,187622073)=16,64534677-1,305656063=15,33969071.}
Palyginimui, tiesios linijos ilgis nuo taško (1; 1) iki taško (4; 16) yra
c
=
3
2
+
15
2
=
234
=
15
,
29705854.
{\displaystyle c={\sqrt {3^{2}+15^{2}}}={\sqrt {234}}=15,29705854.}
Apskaičiuosime parabolės
y
=
(
x
+
1
)
3
{\displaystyle y={\sqrt {(x+1)^{3}}}}
lanko ilgį, kai
4
≤
x
≤
12.
{\displaystyle 4\leq x\leq 12.}
Randame
y
′
=
3
2
x
+
1
,
d
s
=
1
+
(
d
y
d
x
)
2
d
x
=
1
+
9
4
(
x
+
1
)
d
x
=
13
4
+
9
4
x
d
x
.
{\displaystyle y'={3 \over 2}{\sqrt {x+1}},\;ds={\sqrt {1+({dy \over dx})^{2}}}dx={\sqrt {1+{9 \over 4}(x+1)}}dx={\sqrt {{13 \over 4}+{9 \over 4}x}}dx.}
Tada iš integralų lentelės
L
=
∫
L
d
s
=
∫
4
12
13
4
+
9
4
x
d
x
=
∫
4
12
1
4
⋅
13
+
9
x
d
x
=
1
9
⋅
1
2
∫
4
12
13
+
9
x
d
(
13
+
9
x
)
=
{\displaystyle L=\int _{L}ds=\int _{4}^{12}{\sqrt {{13 \over 4}+{9 \over 4}x}}\;dx=\int _{4}^{12}{\sqrt {1 \over 4}}\cdot {\sqrt {13+9x}}dx={1 \over 9}\cdot {1 \over 2}\int _{4}^{12}{\sqrt {13+9x}}d(13+9x)=}
=
1
18
⋅
(
13
+
9
x
)
1
2
+
1
3
2
|
4
12
=
{\displaystyle ={1 \over 18}\cdot {(13+9x)^{{1 \over 2}+1} \over {3 \over 2}}|_{4}^{12}=}
=
2
18
⋅
3
(
13
+
9
x
)
3
|
4
12
=
1
27
[
(
13
+
9
⋅
12
)
3
−
(
13
+
9
⋅
4
)
3
]
=
{\displaystyle ={2 \over 18\cdot 3}{\sqrt {(13+9x)^{3}}}|_{4}^{12}={1 \over 27}[{\sqrt {(13+9\cdot 12)^{3}}}-{\sqrt {(13+9\cdot 4)^{3}}}]=}
=
1
27
[
1771561
−
117649
]
=
1
27
⋅
(
1331
−
343
)
=
988
27
=≈
36
,
59259259.
{\displaystyle ={1 \over 27}[{\sqrt {1771561}}-{\sqrt {117649}}]={1 \over 27}\cdot (1331-343)={988 \over 27}=\approx 36,59259259.}
Palyginimui, atkrapos ilgis nuo taško (4;
(
4
+
1
)
3
/
2
{\displaystyle (4+1)^{3/2}}
) iki taško (12;
(
12
+
1
)
3
/
2
{\displaystyle (12+1)^{3/2}}
) yra
c
=
(
12
−
4
)
2
+
[
(
12
+
1
)
3
−
(
4
+
1
)
3
]
2
=
{\displaystyle c={\sqrt {(12-4)^{2}+[{\sqrt {(12+1)^{3}}}-{\sqrt {(4+1)^{3}}}]^{2}}}=}
=
8
2
+
(
2197
−
125
)
2
=
64
+
1273
,
906493
=
36
,
57740413.
{\displaystyle ={\sqrt {8^{2}+({\sqrt {2197}}-{\sqrt {125}})^{2}}}={\sqrt {64+1273,906493}}=36,57740413.}
Apskaičiuosime kreivės
y
=
x
{\displaystyle y={\sqrt {x}}}
lanko ilgį, kai
1
≤
x
≤
16.
{\displaystyle 1\leq x\leq 16.}
Randame
y
′
=
(
x
1
2
)
′
=
1
2
⋅
1
x
.
{\displaystyle y'=(x^{1 \over 2})'={1 \over 2}\cdot {1 \over {\sqrt {x}}}.}
Gauname
L
=
∫
1
16
1
+
(
y
′
)
2
d
x
=
∫
1
16
1
+
(
1
2
x
)
2
d
x
=
∫
1
16
1
+
1
4
x
d
x
=
1
2
∫
1
16
4
+
1
x
d
x
=
{\displaystyle L=\int _{1}^{16}{\sqrt {1+(y')^{2}}}dx=\int _{1}^{16}{\sqrt {1+({1 \over 2{\sqrt {x}}})^{2}}}dx=\int _{1}^{16}{\sqrt {1+{1 \over 4x}}}dx={1 \over 2}\int _{1}^{16}{\sqrt {4+{1 \over x}}}dx=}
=
1
2
[
x
1
x
+
4
+
1
4
ln
(
4
x
(
1
x
+
4
+
2
)
+
1
)
]
|
1
16
=
{\displaystyle ={1 \over 2}[x{\sqrt {{1 \over x}+4}}+{1 \over 4}\ln(4x({\sqrt {{1 \over x}+4}}+2)+1)]|_{1}^{16}=}
=
1
2
[
16
1
16
+
4
+
1
4
ln
(
4
⋅
16
(
1
16
+
4
+
2
)
+
1
)
]
−
1
2
[
1
1
1
+
4
+
1
4
ln
(
4
(
1
1
+
4
+
2
)
+
1
)
]
=
{\displaystyle ={1 \over 2}[16{\sqrt {{1 \over 16}+4}}+{1 \over 4}\ln(4\cdot 16({\sqrt {{1 \over 16}+4}}+2)+1)]-{1 \over 2}[1{\sqrt {{1 \over 1}+4}}+{1 \over 4}\ln(4({\sqrt {{1 \over 1}+4}}+2)+1)]=}
=
1
2
[
16
⋅
2
,
015564437
+
1
4
ln
(
64
(
2
,
015564437
+
2
)
+
1
)
]
−
1
2
[
5
+
1
4
ln
(
4
(
5
+
2
)
+
1
)
]
=
{\displaystyle ={1 \over 2}[16\cdot 2,015564437+{1 \over 4}\ln(64(2,015564437+2)+1)]-{1 \over 2}[{\sqrt {5}}+{1 \over 4}\ln(4({\sqrt {5}}+2)+1)]=}
=
1
2
[
32
,
24903099
+
1
4
ln
(
256
,
996124
+
1
)
]
−
1
2
[
2
,
236067978
+
1
4
ln
(
17
,
94427191
)
]
=
{\displaystyle ={1 \over 2}[32,24903099+{1 \over 4}\ln(256,996124+1)]-{1 \over 2}[2,236067978+{1 \over 4}\ln(17,94427191)]=}
=
1
2
[
32
,
24903099
+
1
4
⋅
5
,
552944561
]
−
1
2
[
2
,
236067978
+
2
,
88727095
4
]
=
{\displaystyle ={1 \over 2}[32,24903099+{1 \over 4}\cdot 5,552944561]-{1 \over 2}[2,236067978+{2,88727095 \over 4}]=}
=
16
,
81863357
−
1
,
478942858
=
15
,
33969071.
{\displaystyle =16,81863357-1,478942858=15,33969071.}
Palyginimui, tiesės ilgis nuo taško (1; 1) iki taško (16; 4) yra
c
=
(
16
−
1
)
2
+
(
4
−
1
)
2
=
225
+
9
=
15
,
29705854.
{\displaystyle c={\sqrt {(16-1)^{2}+(4-1)^{2}}}={\sqrt {225+9}}=15,29705854.}
Apskaičiuosime kreivės lanko ilgį , kai
y
=
1
−
ln
(
cos
x
)
;
{\displaystyle y=1-\ln(\cos x);}
0
≤
x
≤
π
3
.
{\displaystyle 0\leq x\leq {\pi \over 3}.}
Randame funkcijos išvestinę
y
′
=
(
1
−
ln
(
cos
x
)
)
′
=
−
−
sin
(
x
)
cos
(
x
)
=
sin
x
cos
x
.
{\displaystyle y'=(1-\ln(\cos x))'=-{\frac {-\sin(x)}{\cos(x)}}={\frac {\sin x}{\cos x}}.}
Randame kreivės lanko ilgį:
l
=
∫
0
π
3
1
+
sin
2
x
cos
2
x
d
x
=
∫
0
π
3
d
x
cos
x
=
ln
|
tan
(
x
2
+
π
4
)
|
|
0
π
3
=
ln
|
tan
5
π
12
|
−
ln
|
tan
π
4
|
=
1
,
316957897.
{\displaystyle l=\int _{0}^{\pi \over 3}{\sqrt {1+{\sin ^{2}x \over \cos ^{2}x}}}dx=\int _{0}^{\pi \over 3}{dx \over \cos x}=\ln \left|\tan \left({\frac {x}{2}}+{\frac {\pi }{4}}\right)\right||_{0}^{\pi \over 3}=\ln |\tan {5\pi \over 12}|-\ln |\tan {\pi \over 4}|=1,316957897.}
Apskaičiuokime cikloidės
x
=
a
(
t
−
sin
t
)
,
{\displaystyle x=a(t-\sin t),}
y
=
a
(
1
−
cos
t
)
{\displaystyle y=a(1-\cos t)}
(
a
>
0
)
{\displaystyle (a>0)}
pirmosios arkos ilgį.
Pirmoji cikloidės arka gaunama, kai parametras t kinta nuo 0 iki
2
π
.
{\displaystyle 2\pi .}
Randame:
x
t
′
=
a
(
1
−
cos
t
)
,
{\displaystyle x_{t}'=a(1-\cos t),}
y
t
′
=
a
sin
t
,
{\displaystyle y_{t}'=a\sin t,}
x
t
′
2
+
y
t
′
2
=
a
2
(
1
−
2
cos
t
+
cos
2
t
)
+
a
2
sin
2
t
=
2
a
2
(
1
−
cos
t
)
=
{\displaystyle {\sqrt {x_{t}'^{2}+y_{t}'^{2}}}={\sqrt {a^{2}(1-2\cos t+\cos ^{2}t)+a^{2}\sin ^{2}t}}={\sqrt {2a^{2}(1-\cos t)}}=}
=
4
a
2
sin
2
t
t
2
=
2
a
|
sin
t
2
|
=
2
a
sin
t
2
,
{\displaystyle ={\sqrt {4a^{2}\sin ^{2}t{t \over 2}}}=2a|\sin {t \over 2}|=2a\sin {t \over 2},}
nes
sin
t
2
≥
0
,
{\displaystyle \sin {t \over 2}\geq 0,}
kai
t
∈
[
0
;
2
π
]
.
{\displaystyle t\in [0;2\pi ].}
Tuomet
L
=
2
a
∫
0
2
π
sin
t
2
d
t
=
4
a
∫
0
2
π
sin
t
2
d
(
t
/
2
)
=
−
4
a
cos
t
2
|
0
2
π
=
8
a
.
{\displaystyle L=2a\int _{0}^{2\pi }\sin {t \over 2}dt=4a\int _{0}^{2\pi }\sin {t \over 2}d(t/2)=-4a\cos {t \over 2}|_{0}^{2\pi }=8a.}
Kaip atrodo cikloidė galima pažiūrėti čia https://lt.wikipedia.org/wiki/Cikloidė
Rasime lanko AB ilgį susuktos linijos
x
=
cos
t
,
{\displaystyle x=\cos t,}
y
=
sin
t
,
{\displaystyle y=\sin t,}
z
=
2
t
,
{\displaystyle z=2t,}
0
≤
t
≤
π
.
{\displaystyle 0\leq t\leq \pi .}
Pagal trečią formulę:
s
=
∫
0
π
sin
2
t
+
cos
2
t
+
4
d
t
=
5
π
.
{\displaystyle s=\int _{0}^{\pi }{\sqrt {\sin ^{2}t+\cos ^{2}t+4}}dt={\sqrt {5}}\pi .}
Rasime lanko ilgį kardiodės
ρ
=
a
(
1
−
cos
ϕ
)
,
{\displaystyle \rho =a(1-\cos \phi ),}
a
>
0.
{\displaystyle a>0.}
Pagal ketvirtą formulę turime:
s
=
∫
α
β
ρ
2
+
ρ
′
2
d
ϕ
=
2
a
∫
0
π
(
1
−
cos
ϕ
)
2
+
sin
2
ϕ
d
ϕ
=
{\displaystyle s=\int _{\alpha }^{\beta }{\sqrt {\rho ^{2}+\rho '^{2}}}d\phi =2a\int _{0}^{\pi }{\sqrt {(1-\cos \phi )^{2}+\sin ^{2}\phi }}d\phi =}
=
2
a
∫
0
π
1
−
2
cos
ϕ
+
cos
2
ϕ
+
sin
2
ϕ
d
ϕ
=
2
a
∫
0
π
2
(
1
−
cos
ϕ
)
d
ϕ
=
2
a
∫
0
π
4
sin
2
ϕ
2
d
ϕ
=
{\displaystyle =2a\int _{0}^{\pi }{\sqrt {1-2\cos \phi +\cos ^{2}\phi +\sin ^{2}\phi }}d\phi =2a\int _{0}^{\pi }{\sqrt {2(1-\cos \phi )}}d\phi =2a\int _{0}^{\pi }{\sqrt {4\sin ^{2}{\phi \over 2}}}d\phi =}
=
4
a
∫
0
π
sin
ϕ
2
=
−
8
a
cos
ϕ
2
|
0
π
=
−
8
a
(
0
−
1
)
=
8
a
.
{\displaystyle =4a\int _{0}^{\pi }\sin {\phi \over 2}=-8a\cos {\phi \over 2}|_{0}^{\pi }=-8a(0-1)=8a.}
Kaip atrodo kardioidė galima pažiūrėti čia https://en.wikipedia.org/wiki/Cardioid
Rasti kardiodės
ρ
=
a
(
1
+
cos
θ
)
{\displaystyle \rho =a(1+\cos \theta )}
ilgį.
Keisdami poliarinį kampą
θ
{\displaystyle \theta }
nuo 0 iki
π
,
{\displaystyle \pi ,}
gausime pusę ieškomo ilgio. Čia
ρ
′
=
−
a
sin
θ
.
{\displaystyle \rho '=-a\sin \theta .}
Taigi,
s
=
2
∫
0
π
a
2
(
1
+
cos
θ
)
2
+
a
2
sin
2
θ
d
θ
=
2
a
∫
0
π
1
+
2
cos
θ
+
cos
2
θ
+
sin
2
θ
d
θ
=
{\displaystyle s=2\int _{0}^{\pi }{\sqrt {a^{2}(1+\cos \theta )^{2}+a^{2}\sin ^{2}\theta }}d\theta =2a\int _{0}^{\pi }{\sqrt {1+2\cos \theta +\cos ^{2}\theta +\sin ^{2}\theta }}d\theta =}
=
2
a
∫
0
π
2
+
2
cos
θ
d
θ
=
2
2
a
∫
0
π
1
+
cos
θ
d
θ
=
2
2
a
∫
0
π
2
cos
θ
2
d
θ
=
{\displaystyle =2a\int _{0}^{\pi }{\sqrt {2+2\cos \theta }}d\theta =2{\sqrt {2}}a\int _{0}^{\pi }{\sqrt {1+\cos \theta }}d\theta =2{\sqrt {2}}a\int _{0}^{\pi }{\sqrt {2}}\cos {\frac {\theta }{2}}\;d\theta =}
=
4
a
∫
0
π
cos
θ
2
d
θ
=
8
a
sin
θ
2
|
0
π
=
8
a
.
{\displaystyle =4a\int _{0}^{\pi }\cos {\frac {\theta }{2}}\;d\theta =8a\sin {\frac {\theta }{2}}|_{0}^{\pi }=8a.}
Rasime kreivės lanko ilgį, kai
ρ
=
sin
3
ϕ
3
,
0
≤
ϕ
≤
π
2
.
{\displaystyle \rho =\sin ^{3}{\phi \over 3},\;0\leq \phi \leq {\pi \over 2}.}
Pagal ketvirtą formulę:
l
=
∫
0
π
3
(
sin
3
ϕ
3
)
2
+
(
3
sin
2
ϕ
3
⋅
1
3
cos
ϕ
3
)
2
d
ϕ
=
∫
0
π
3
sin
6
ϕ
3
+
sin
4
ϕ
3
⋅
cos
2
ϕ
3
d
ϕ
=
∫
0
π
2
sin
2
ϕ
3
sin
2
ϕ
3
+
cos
2
ϕ
3
d
ϕ
=
{\displaystyle l=\int _{0}^{\pi \over 3}{\sqrt {\left(\sin ^{3}{\phi \over 3}\right)^{2}+\left(3\sin ^{2}{\phi \over 3}\cdot {1 \over 3}\cos {\phi \over 3}\right)^{2}}}d\phi =\int _{0}^{\pi \over 3}{\sqrt {\sin ^{6}{\phi \over 3}+\sin ^{4}{\phi \over 3}\cdot \cos ^{2}{\phi \over 3}}}d\phi =\int _{0}^{\pi \over 2}\sin ^{2}{\phi \over 3}{\sqrt {\sin ^{2}{\phi \over 3}+\cos ^{2}{\phi \over 3}}}d\phi =}
=
1
2
∫
0
π
2
(
1
+
cos
2
ϕ
3
)
d
ϕ
=
1
2
⋅
π
2
+
1
2
⋅
3
2
sin
2
ϕ
3
|
0
π
2
=
π
4
+
3
4
⋅
3
2
=
π
4
+
3
3
8
.
{\displaystyle ={1 \over 2}\int _{0}^{\pi \over 2}(1+\cos {2\phi \over 3})d\phi ={1 \over 2}\cdot {\pi \over 2}+{1 \over 2}\cdot {3 \over 2}\sin {2\phi \over 3}|_{0}^{\pi \over 2}={\pi \over 4}+{3 \over 4}\cdot {{\sqrt {3}} \over 2}={\pi \over 4}+{3{\sqrt {3}} \over 8}.}
Archimedo spiralė.
Apskaičiuosime ilgį pirmos vijos Archimedo spiralės:
ρ
=
a
ϕ
.
{\displaystyle \rho =a\phi .}
Pirma vija spiralės pasidaro, keičiantis poliariniui kampui
ϕ
{\displaystyle \phi }
nuo 0 iki
2
π
.
{\displaystyle 2\pi .}
Todėl pagal ketvirtą formulę ieškomas ilgis lanko yra
L
=
∫
α
β
ρ
(
ϕ
)
+
ρ
′
2
(
ϕ
)
d
ϕ
=
∫
0
2
π
a
2
ϕ
2
+
a
2
d
ϕ
=
a
∫
0
2
π
ϕ
2
+
1
d
ϕ
=
{\displaystyle L=\int _{\alpha }^{\beta }{\sqrt {\rho (\phi )+\rho '^{2}(\phi )}}d\phi =\int _{0}^{2\pi }{\sqrt {a^{2}\phi ^{2}+a^{2}}}d\phi =a\int _{0}^{2\pi }{\sqrt {\phi ^{2}+1}}d\phi =}
=
a
[
π
4
π
2
+
1
+
1
2
ln
(
2
π
+
4
π
2
+
1
)
]
=
{\displaystyle =a[\pi {\sqrt {4\pi ^{2}+1}}+{1 \over 2}\ln(2\pi +{\sqrt {4\pi ^{2}+1}})]=}
=
a
[
19
,
9876454
+
1
,
268648751
]
=
a
21
,
25629415.
{\displaystyle =a[19,9876454+1,268648751]=a21,25629415.}
Apskaičiuosime vienos vijos linijos ilgį:
x
=
cos
t
,
{\displaystyle x=\cos t,}
y
=
sin
t
,
{\displaystyle y=\sin t,}
z
=
t
,
{\displaystyle z=t,}
0
≤
t
≤
2
π
.
{\displaystyle 0\leq t\leq 2\pi .}
Tai yra linija apsukta vieną kartą aplink cilindrą, kurio aukštis yra t . Gauname:
d
x
=
−
sin
(
t
)
d
t
,
{\displaystyle dx=-\sin(t)dt,}
d
y
=
cos
(
t
)
d
t
{\displaystyle dy=\cos(t)dt}
,
d
z
=
d
t
{\displaystyle dz=dt}
,
d
z
d
t
=
1
;
{\displaystyle {\frac {dz}{dt}}=1;}
(
x
t
′
)
2
+
(
y
t
′
)
2
+
(
z
t
′
)
2
=
(
−
sin
t
)
2
+
(
cos
t
)
2
+
1
.
{\displaystyle {\sqrt {(x_{t}')^{2}+(y_{t}')^{2}+(z_{t}')^{2}}}={\sqrt {(-\sin t)^{2}+(\cos t)^{2}+1}}.}
Randame vienos vijos ilgį:
L
=
∫
0
2
π
(
−
sin
t
)
2
+
(
cos
t
)
2
+
1
d
t
=
2
∫
0
2
π
d
t
=
2
t
|
0
2
π
=
2
2
π
.
{\displaystyle L=\int _{0}^{2\pi }{\sqrt {(-\sin t)^{2}+(\cos t)^{2}+1}}dt={\sqrt {2}}\int _{0}^{2\pi }dt={\sqrt {2}}t|_{0}^{2\pi }=2{\sqrt {2}}\pi .}
Apskaičiuoti ilgį hipocikloidės (astroidės):
x
=
a
cos
3
t
,
y
=
a
sin
3
t
.
{\displaystyle x=a\cos ^{3}t,\;\;y=a\sin ^{3}t.}
Sprendimas . Kadangi kreivė simetriška dviejų koordinačių ašių atžvilgiu, tai iš pradžių apskaičiuosime ketvirtadalį jos dalies, esančios pirmame ketvirtyje. Randame:
d
x
d
t
=
−
3
a
cos
2
t
sin
t
,
d
y
d
t
=
3
a
sin
2
t
cos
t
.
{\displaystyle {\frac {dx}{dt}}=-3a\cos ^{2}t\sin t,\;\;{\frac {dy}{dt}}=3a\sin ^{2}t\cos t.}
Parametras t kis nuo 0 iki
π
/
2.
{\displaystyle \pi /2.}
Taigi,
1
4
s
=
∫
0
π
/
2
9
a
2
cos
4
t
sin
2
t
+
9
a
2
sin
4
t
cos
2
t
d
t
=
3
a
∫
0
π
/
2
cos
2
t
sin
2
t
(
cos
2
t
+
sin
2
t
)
d
t
=
{\displaystyle {\frac {1}{4}}s=\int _{0}^{\pi /2}{\sqrt {9a^{2}\cos ^{4}t\sin ^{2}t+9a^{2}\sin ^{4}t\cos ^{2}t}}dt=3a\int _{0}^{\pi /2}{\sqrt {\cos ^{2}t\sin ^{2}t(\cos ^{2}t+\sin ^{2}t)}}dt=}
=
3
a
∫
0
π
/
2
cos
t
sin
t
d
t
=
3
a
∫
0
π
/
2
sin
t
d
(
sin
t
)
=
3
a
sin
2
t
2
|
0
π
/
2
=
3
a
2
;
s
=
6
a
.
{\displaystyle =3a\int _{0}^{\pi /2}\cos t\sin t\;dt=3a\int _{0}^{\pi /2}\sin t\;d(\sin t)=3a{\frac {\sin ^{2}t}{2}}|_{0}^{\pi /2}={\frac {3a}{2}};\;\;s=6a.}
Kaip atrodo astroidė galima pažiūrėti čia https://en.wikipedia.org/wiki/Astroid