Vektorius – matematinis dydis, apibūdinamas reikšme ir kryptimi erdvėje. Grafiškai vektoriai vaizduojami tiesių atkarpomis su rodyklėmis.
Bendriausias vektoriaus pavyzdys fizikoje būtų jėga .
Skaitinių dydžių grupė abibūdinanti pasirinktą objektą gali būti užrašyta sugrupuotų skaičių sąrašu arba kitaip -- vektoriumi:
v
=
(
v
1
,
v
2
,
.
.
.
,
v
n
)
{\displaystyle v=(v_{1},v_{2},...,v_{n})}
.
kur v yra d skaičių vektorius. Išraiškos su vektoriais yra naudojamos siekiant kompaktiškai užrašyti bei patogiai manipuliuoti ilgomis skaičių grupėmis. Kitas vektorinio užrašymo privalumas yra jo geometrinė interpretacija -- kiekvieną v galima įsivaizduoti kaip vektorių jungiantį n -matės erdvės koordinačių pradžią su tašku, kurio koordinatės nustatytos nariais sudarančiais v .
Vektoriaus daugyba iš skaliaro
keisti
Vienas realaus dydžio skaičius yra vadinamas skaliaru . Vektoriaus daugyba iš skaliaro yra kiekvieno vektoriaus nario daugyba iš skaliaro ir gauta sandauga yra vektorius:
c
v
=
(
c
v
1
,
c
v
2
,
.
.
.
,
c
v
n
)
{\displaystyle cv=(cv_{1},cv_{2},...,cv_{n})}
.
Du vektoriai sudedami sudedant kiekvieno iš jų atitinkamus narius:
v
+
w
=
(
v
1
+
w
1
,
v
2
+
w
2
,
.
.
.
,
v
n
+
w
n
)
{\displaystyle v+w=(v_{1}+w_{1},v_{2}+w_{2},...,v_{n}+w_{n})}
.
Atkreipkite dėmesį, jog vektorinė sudėtis yra komutatyvi , t. y., v+w=w+v.
Skaliarinė vektorių sandauga
keisti
Išsamesnis straipsnis: Skaliarinė sandauga .
Skaliarinės sandaugos savoka yra glaudžiai susijusi su vektoriaus ilgio bei vektoriaus projekcijos sampratomis.
Norint vektorius sudauginti skaliariškai, abu vektoriai turi atitikti , t. y., abiejų vektorių narių skaičius turi būti vienodas. Skaliarinė dviejų vektorių sandauga yra suma visų kiekvieno iš vektoriaus atitinkamų narių sandaugų:
v
⋅
w
=
∑
i
=
1
n
v
i
⋅
w
i
=
v
1
w
1
+
v
2
w
2
+
v
3
w
3
+
.
.
.
+
v
n
w
n
.
{\displaystyle v\cdot w=\sum _{i=1}^{n}v_{i}\cdot w_{i}=v_{1}w_{1}+v_{2}w_{2}+v_{3}w_{3}+...+v_{n}w_{n}.}
Skaliarinės vektorių sandaugos rezultatas yra ne vektorius, o skaliaras.
Pavyzdžiui, yra vektoriai a(3; 5; 6) ir b(4; 0; 1), tai jų skaliarinė sandauga bus lygi:
a
⋅
b
=
3
⋅
4
+
5
⋅
0
+
6
⋅
1
=
12
+
0
+
6
=
18.
{\displaystyle a\cdot b=3\cdot 4+5\cdot 0+6\cdot 1=12+0+6=18.}
Išnagrinėkime atvejį, kai atliekama vektoriaus skaliarinė sandauga su juo pačiu. Plokštumos (2 -matės erdvės) bei įprastos koordinačių sistemos atveju turėsime:
v
⋅
v
=
(
v
1
)
2
+
(
v
2
)
2
{\displaystyle v\cdot v=(v_{1})^{2}+(v_{2})^{2}}
.
Prisiminus Pitagoro teoremą , teigiančią, jog stataus trikampio įstrižainės ilgio kvadratas yra lygus trikampio kraštinių ilgių kvadratų sumai, tampa natūralus toks vektoriaus ilgio apibūdinimas:
|
|
v
|
|
=
v
⋅
v
{\displaystyle ||v||={\sqrt {v\cdot v}}}
.
Atkreipkite dėmesį, jog jei nors vienas iš vektoriaus narių bus didesnis nei kiti, tai jo pakėlimas kvadratu lems viso vektoriaus ilgį.
Pavyzdžiui, vektoriaus a(3; -2; 4) ilgis (tai yra ilgis nuo taško (0; 0; 0) iki taško (3; -2; 4)):
|
|
a
|
|
=
a
x
2
+
a
y
2
+
a
z
2
=
3
2
+
(
−
2
)
2
+
4
2
=
9
+
4
+
16
=
29
≈
5.385.
{\displaystyle ||a||={\sqrt {a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}}={\sqrt {3^{2}+(-2)^{2}+4^{2}}}={\sqrt {9+4+16}}={\sqrt {29}}\approx 5.385.}
Pavyzdžiui, žinomos vektoriaus pradžios A(3; 2; -4) ir galo B(6; -5; -2) koordinatės. Tada vektoriaus ilgis bus
A
B
=
(
x
2
−
x
1
)
2
+
(
y
2
−
y
1
)
2
+
(
z
2
−
z
1
)
2
=
(
6
−
3
)
2
+
(
−
5
−
2
)
2
+
(
−
2
−
4
)
2
=
{\displaystyle AB={\sqrt {(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}+(z_{2}-z_{1})^{2}}}={\sqrt {(6-3)^{2}+(-5-2)^{2}+(-2-4)^{2}}}=}
=
9
+
49
+
4
=
62
≈
7.874.
{\displaystyle ={\sqrt {9+49+4}}={\sqrt {62}}\approx 7.874.}
Jeigu vektoriaus pradžios koordinatės A(0; 0; 0), o galo koordinatės B(6; -5; -2), tai vektoriaus AB ilgis bus:
A
B
=
(
6
−
0
)
2
+
(
−
5
−
0
)
2
+
(
−
2
−
0
)
2
=
36
+
25
+
4
=
65
≈
8.062.
{\displaystyle AB={\sqrt {(6-0)^{2}+(-5-0)^{2}+(-2-0)^{2}}}={\sqrt {36+25+4}}={\sqrt {65}}\approx 8.062.}
Vektoriaus sandaugos su skaliaru duos:
||cv ||=c ||v ||.
Pavyzdžiui, vektorius a(3; -2; 4) ir skaliaras c=5. Tada ca =(15; -10; 20).
c
|
|
a
|
|
=
c
a
x
2
+
a
y
2
+
a
z
2
=
5
3
2
+
(
−
2
)
2
+
4
2
=
5
9
+
4
+
16
=
5
29
.
{\displaystyle c||a||=c{\sqrt {a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}}=5{\sqrt {3^{2}+(-2)^{2}+4^{2}}}=5{\sqrt {9+4+16}}=5{\sqrt {29}}.}
|
|
c
a
|
|
=
a
x
2
+
a
y
2
+
a
z
2
=
15
2
+
(
−
10
)
2
+
20
2
=
225
+
100
+
400
=
725
=
5
29
.
{\displaystyle ||ca||={\sqrt {a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}}={\sqrt {15^{2}+(-10)^{2}+20^{2}}}={\sqrt {225+100+400}}={\sqrt {725}}=5{\sqrt {29}}.}
Trikampio nelygybė naudojama apibūdinti dviejų vektorių sumos ilgį:
||v +w ||<=||v ||+||w ||.
Pavyzdžiui, yra vektoriai v=(3; -2; 4) ir w=(1; 5; 8). z =v +w =(3+1; -2+5; 4+8)=(4; 3; 12).
|
|
z
|
|
=
4
2
+
3
2
+
12
2
=
16
+
9
+
144
=
169
=
13.
{\displaystyle ||z||={\sqrt {4^{2}+3^{2}+12^{2}}}={\sqrt {16+9+144}}={\sqrt {169}}=13.}
|
|
v
|
|
=
3
2
+
(
−
2
)
2
+
4
2
=
29
≈
5.385164807.
{\displaystyle ||v||={\sqrt {3^{2}+(-2)^{2}+4^{2}}}={\sqrt {29}}\approx 5.385164807.}
|
|
w
|
|
=
1
2
+
5
2
+
8
2
=
1
+
25
+
64
=
90
=
3
10
≈
9.486832981.
{\displaystyle ||w||={\sqrt {1^{2}+5^{2}+8^{2}}}={\sqrt {1+25+64}}={\sqrt {90}}=3{\sqrt {10}}\approx 9.486832981.}
||v||+||w||=5.385164807+9.486832981=14.87199779.
|
|
z
|
|
=
|
|
v
+
w
|
|
=
13
≤
14.87199779
=
|
|
v
|
|
+
|
|
w
|
|
.
{\displaystyle ||z||=||v+w||=13\leq 14.87199779=||v||+||w||.}
Atstumas tarp vieno vektoriaus galo ir kito vektoriaus galo (atstumas tarp dviejų taškų n-matėje koordinačių sistemoje ) matuojamas pagal formulę:
‖
v
−
w
‖
=
∑
i
=
1
n
(
v
i
−
w
i
)
2
=
(
v
1
−
w
1
)
2
+
(
v
2
−
w
2
)
2
+
.
.
.
+
(
v
n
−
w
n
)
2
.
{\displaystyle \|v-w\|={\sqrt {\sum _{i=1}^{n}(v_{i}-w_{i})^{2}}}={\sqrt {(v_{1}-w_{1})^{2}+(v_{2}-w_{2})^{2}+...+(v_{n}-w_{n})^{2}}}.}
Pavyzdžiai
Turime vektorius v=[3, 6], w=[7, 4]. Atstumas tarp jų galų:
(
3
−
7
)
2
+
(
6
−
4
)
2
=
20
≈
4
,
47.
{\displaystyle {\sqrt {(3-7)^{2}+(6-4)^{2}}}={\sqrt {20}}\approx 4,47.}
Rasime trikampio, esančio trimatėje erdvėje, plotą. Trikampio viršunių koordinates (x; y; z) yra tokios: A(8; 3; -3); B(3; 2; -1); C(4; 0; -3). Dabar reikia surasti tiesių ilgius AB, AC ir BC:
a
=
A
B
=
(
8
−
3
)
2
+
(
3
−
2
)
2
+
(
−
3
−
(
−
1
)
)
2
=
30
,
{\displaystyle a=AB={\sqrt {(8-3)^{2}+(3-2)^{2}+(-3-(-1))^{2}}}={\sqrt {30}},}
b
=
A
C
=
(
8
−
4
)
2
+
(
3
−
0
)
2
+
(
−
3
−
(
−
3
)
)
2
=
5
,
{\displaystyle b=AC={\sqrt {(8-4)^{2}+(3-0)^{2}+(-3-(-3))^{2}}}=5,}
c
=
B
C
=
(
3
−
4
)
2
+
(
2
−
0
)
2
+
(
−
1
−
(
−
3
)
)
2
=
3.
{\displaystyle c=BC={\sqrt {(3-4)^{2}+(2-0)^{2}+(-1-(-3))^{2}}}=3.}
Taikydami Herono formule apskaičiuojame trikampio pusperimetrį p :
p
=
a
+
b
+
c
2
=
30
+
5
+
3
2
≈
13.477.
{\displaystyle p={\frac {a+b+c}{2}}={\frac {{\sqrt {30}}+5+3}{2}}\approx 13.477.}
Ir trikampio plotą S :
S
=
p
(
p
−
a
)
(
p
−
b
)
(
p
−
c
)
≈
13.477
(
13.477
−
5.477
)
(
13.477
−
5
)
(
13.477
−
3
)
≈
97.855
{\displaystyle S={\sqrt {p(p-a)(p-b)(p-c)}}\approx {\sqrt {13.477(13.477-5.477)(13.477-5)(13.477-3)}}\approx 97.855}
Rasime trikampio plotą, kurio višunės yra taškuose A(1; 3; -2), B(2; -1; 3), C(0; 2; 4).
a
=
A
B
=
(
1
−
2
)
2
+
(
3
+
1
)
2
+
(
−
2
−
3
)
2
=
1
+
16
+
25
=
42
≈
6.48
,
{\displaystyle a=AB={\sqrt {(1-2)^{2}+(3+1)^{2}+(-2-3)^{2}}}={\sqrt {1+16+25}}={\sqrt {42}}\approx 6.48,}
b
=
A
C
=
(
1
−
0
)
2
+
(
3
−
2
)
2
+
(
−
2
−
4
)
2
=
1
+
1
+
36
=
38
≈
6.16
,
{\displaystyle b=AC={\sqrt {(1-0)^{2}+(3-2)^{2}+(-2-4)^{2}}}={\sqrt {1+1+36}}={\sqrt {38}}\approx 6.16,}
c
=
B
C
=
(
2
−
0
)
2
+
(
−
1
−
2
)
2
+
(
3
−
4
)
2
=
4
+
9
+
1
=
14
≈
3.74.
{\displaystyle c=BC={\sqrt {(2-0)^{2}+(-1-2)^{2}+(3-4)^{2}}}={\sqrt {4+9+1}}={\sqrt {14}}\approx 3.74.}
p
=
42
+
38
+
14
2
≈
8.193406044.
{\displaystyle p={\frac {{\sqrt {42}}+{\sqrt {38}}+{\sqrt {14}}}{2}}\approx 8.193406044.}
S
≈
8.193406044
(
8.193406044
−
42
)
(
8.193406044
−
38
)
(
8.193406044
−
14
)
≈
{\displaystyle S\approx {\sqrt {8.193406044(8.193406044-{\sqrt {42}})(8.193406044-{\sqrt {38}})(8.193406044-{\sqrt {14}})}}\approx }
≈
8.193406044
⋅
1
,
712665346
⋅
2
,
028992041
⋅
4
,
451748657
=
126
,
750000
=
11.25833025.
{\displaystyle \approx {\sqrt {8.193406044\cdot 1,712665346\cdot 2,028992041\cdot 4,451748657}}={\sqrt {126,750000}}=11.25833025.}
Šio trikampio plotą galima apskaičiuoti naudojantis vektorine sandauga. AB=(2-1; -1-3; 3+2)=(1; -4; 5), AC=(0-1; 2-3; 4+2)=(-1; -1; 6).
A
B
×
A
C
=
|
i
j
k
1
−
4
5
−
1
−
1
6
|
=
|
−
4
5
−
1
6
|
i
−
|
1
5
−
1
6
|
j
+
|
1
−
4
−
1
−
1
|
k
=
−
19
i
−
11
j
−
5
k
=
(
−
19
;
−
11
;
−
5
)
.
{\displaystyle AB\times AC={\begin{vmatrix}i&j&k\\1&-4&5\\-1&-1&6\end{vmatrix}}={\begin{vmatrix}-4&5\\-1&6\end{vmatrix}}i-{\begin{vmatrix}1&5\\-1&6\end{vmatrix}}j+{\begin{vmatrix}1&-4\\-1&-1\end{vmatrix}}k=-19i-11j-5k=(-19;-11;-5).}
‖
A
B
×
A
C
‖
=
(
−
19
)
2
+
(
−
11
)
2
+
(
−
5
)
2
=
507
.
{\displaystyle \|AB\times AC\|={\sqrt {(-19)^{2}+(-11)^{2}+(-5)^{2}}}={\sqrt {507}}.}
S
Δ
A
B
C
=
1
2
‖
A
B
×
A
C
‖
=
1
2
507
≈
11.25833025.
{\displaystyle S_{\Delta ABC}={\frac {1}{2}}\|AB\times AC\|={\frac {1}{2}}{\sqrt {507}}\approx 11.25833025.}
Vektoriaus projekcijos į koordinačių ašis
keisti
Projekcija vieno vektoriaus į kitą vektorių
keisti
Pusiaukampinė tarp vektorių
keisti
Jei duoti vektoriai a =OA ir b =OB , tai pusiaukampinės ON =c (arba tiesiog, taško N koordinatės, kai taškas O (0; 0; 0)) koordinatės yra:
c
→
=
a
→
‖
a
→
‖
+
b
→
‖
b
→
‖
.
{\displaystyle {\vec {c}}={\frac {\vec {a}}{\|{\vec {a}}\|}}+{\frac {\vec {b}}{\|{\vec {b}}\|}}.}
Vektoriaus a ortas yra
a
→
‖
a
→
‖
.
{\displaystyle {\frac {\vec {a}}{\|{\vec {a}}\|}}.}
Vektoriaus ON ortas yra:
a
→
‖
a
→
‖
+
b
→
‖
b
→
‖
‖
a
→
‖
a
→
‖
+
b
→
‖
b
→
‖
‖
.
{\displaystyle {\frac {{\frac {\vec {a}}{\|{\vec {a}}\|}}+{\frac {\vec {b}}{\|{\vec {b}}\|}}}{\|{\frac {\vec {a}}{\|{\vec {a}}\|}}+{\frac {\vec {b}}{\|{\vec {b}}\|}}\|}}.}
Vektoriaus ortas ir vektorius yra vienakrypčiai, tačiau vektoriaus orto ilgis lygus 1.
‖
a
→
‖
a
→
‖
+
b
→
‖
b
→
‖
‖
a
→
‖
a
→
‖
+
b
→
‖
b
→
‖
‖
‖
=
1.
{\displaystyle \|{\frac {{\frac {\vec {a}}{\|{\vec {a}}\|}}+{\frac {\vec {b}}{\|{\vec {b}}\|}}}{\|{\frac {\vec {a}}{\|{\vec {a}}\|}}+{\frac {\vec {b}}{\|{\vec {b}}\|}}\|}}\|=1.}
Vektorių a ir b ortų ilgiai lygus vienam,
‖
a
→
‖
a
→
‖
‖
=
1
;
‖
b
→
‖
b
→
‖
‖
=
1.
{\displaystyle \|{\frac {\vec {a}}{\|{\vec {a}}\|}}\|=1;\,\,\,\|{\frac {\vec {b}}{\|{\vec {b}}\|}}\|=1.}
Vektorių padauginus iš skaliaro, vektroriaus ilgis pasikeičia, o kryptis išlieka ta pati.
Pavyzdis . Duoti vektoriai a =(5; 3), b =(4; 20). Pusiaukampinė yra:
c
→
=
a
→
‖
a
→
‖
+
b
→
‖
b
→
‖
=
5
i
+
3
j
5
2
+
3
2
+
4
i
+
20
j
4
2
+
20
2
=
5
i
+
3
j
25
+
9
+
4
i
+
20
j
16
+
400
=
5
i
34
+
3
j
34
+
4
i
416
+
20
j
416
=
{\displaystyle {\vec {c}}={\frac {\vec {a}}{\|{\vec {a}}\|}}+{\frac {\vec {b}}{\|{\vec {b}}\|}}={\frac {5i+3j}{\sqrt {5^{2}+3^{2}}}}+{\frac {4i+20j}{\sqrt {4^{2}+20^{2}}}}={\frac {5i+3j}{\sqrt {25+9}}}+{\frac {4i+20j}{\sqrt {16+400}}}={\frac {5i}{\sqrt {34}}}+{\frac {3j}{\sqrt {34}}}+{\frac {4i}{\sqrt {416}}}+{\frac {20j}{\sqrt {416}}}=}
=
5
416
+
4
34
34
⋅
416
i
+
3
416
+
20
34
34
⋅
416
j
=
5
⋅
4
26
+
4
34
34
⋅
4
26
i
+
3
⋅
4
26
+
20
34
34
⋅
4
26
j
=
{\displaystyle ={\frac {5{\sqrt {416}}+4{\sqrt {34}}}{{\sqrt {34}}\cdot {\sqrt {416}}}}i+{\frac {3{\sqrt {416}}+20{\sqrt {34}}}{{\sqrt {34}}\cdot {\sqrt {416}}}}j={\frac {5\cdot 4{\sqrt {26}}+4{\sqrt {34}}}{{\sqrt {34}}\cdot 4{\sqrt {26}}}}i+{\frac {3\cdot 4{\sqrt {26}}+20{\sqrt {34}}}{{\sqrt {34}}\cdot 4{\sqrt {26}}}}j=}
=
5
26
+
34
34
⋅
26
i
+
3
26
+
5
34
34
⋅
26
j
=
5
26
+
34
884
i
+
3
26
+
5
34
884
j
=
{\displaystyle ={\frac {5{\sqrt {26}}+{\sqrt {34}}}{{\sqrt {34}}\cdot {\sqrt {26}}}}i+{\frac {3{\sqrt {26}}+5{\sqrt {34}}}{{\sqrt {34}}\cdot {\sqrt {26}}}}j={\frac {5{\sqrt {26}}+{\sqrt {34}}}{\sqrt {884}}}i+{\frac {3{\sqrt {26}}+5{\sqrt {34}}}{\sqrt {884}}}j=}
=
0.857492925
i
+
0.514495755
j
+
0.196116135
i
+
0.980580675
j
=
1.053609061
i
+
1.495076431
j
=
(
1.053609061
;
1.495076431
)
.
{\displaystyle =0.857492925i+0.514495755j+0.196116135i+0.980580675j=1.053609061i+1.495076431j=(1.053609061;1.495076431).}
Jei yra taškai O (0; 0), A (5; 3), B (4; 20), tai taškas N (1.053609061; 1.495076431) su tašku O (0; 0) sudaro tiesę ON , kuri yra pusiaukampinė tarp tiesių OA ir OB .
Randame kampą tarp tiesių ON ir OB .
cos
ϕ
1
=
c
→
⋅
b
→
‖
c
→
‖
⋅
‖
b
→
‖
=
1.053609061
⋅
4
+
1.495076431
⋅
20
1.05360906
2
+
1.495076431
2
⋅
4
2
+
20
2
=
4.214436243
+
29.90152862
3.345345588
⋅
416
=
{\displaystyle \cos \phi _{1}={\frac {{\vec {c}}\cdot {\vec {b}}}{\|{\vec {c}}\|\cdot \|{\vec {b}}\|}}={\frac {1.053609061\cdot 4+1.495076431\cdot 20}{{\sqrt {1.05360906^{2}+1.495076431^{2}}}\cdot {\sqrt {4^{2}+20^{2}}}}}={\frac {4.214436243+29.90152862}{{\sqrt {3.345345588}}\cdot {\sqrt {416}}}}=}
=
34.11596487
37.30500991
=
0.914514295.
{\displaystyle ={\frac {34.11596487}{37.30500991}}=0.914514295.}
=
83
155
⋅
117
=
83
18135
=
83
134.6662541
=
0.616338521.
{\displaystyle ={\frac {83}{{\sqrt {155}}\cdot {\sqrt {117}}}}={\frac {83}{\sqrt {18135}}}={\frac {83}{134.6662541}}=0.616338521.}
ϕ
1
=
arccos
(
0.912101751
)
=
0.416490632
{\displaystyle \phi _{1}=\arccos(0.912101751)=0.416490632}
arba 23.86315547 laipsnio.
Randame kampą tarp tiesių OA ir OB , gauname:
cos
ϕ
2
=
a
→
⋅
b
→
‖
a
→
‖
⋅
‖
b
→
‖
=
5
⋅
4
+
3
⋅
20
5
2
+
3
2
⋅
4
2
+
20
2
=
20
+
60
34
⋅
416
=
80
14144
=
0.672672794.
{\displaystyle \cos \phi _{2}={\frac {{\vec {a}}\cdot {\vec {b}}}{\|{\vec {a}}\|\cdot \|{\vec {b}}\|}}={\frac {5\cdot 4+3\cdot 20}{{\sqrt {5^{2}+3^{2}}}\cdot {\sqrt {4^{2}+20^{2}}}}}={\frac {20+60}{{\sqrt {34}}\cdot {\sqrt {416}}}}={\frac {80}{\sqrt {14144}}}=0.672672794.}
ϕ
2
=
arccos
80
14144
=
arccos
(
0.672672794
)
=
0.832981266
{\displaystyle \phi _{2}=\arccos {\frac {80}{\sqrt {14144}}}=\arccos(0.672672794)=0.832981266}
arba 47.72631099 laipsnių. Palyginimui,
2
ϕ
1
=
2
⋅
0.416490632
=
0.832981265.
{\displaystyle 2\phi _{1}=2\cdot 0.416490632=0.832981265.}
Rasime pusiaukampinę kampo tarp vektorių AB ir AC . Sudėję šių vektorių ortus gausime naują vektorių AG , kurio koordinatės yra:
A
G
→
=
A
B
→
‖
A
B
→
‖
+
A
C
→
‖
A
C
→
‖
=
2
i
+
3
j
+
1
k
2
2
+
3
2
+
1
2
+
−
4
i
+
4
j
−
1
k
(
−
4
)
2
+
4
2
+
(
−
1
)
2
=
2
i
+
3
j
+
1
k
4
+
9
+
1
+
−
4
i
+
4
j
−
1
k
16
+
16
+
1
=
{\displaystyle {\vec {AG}}={\frac {\vec {AB}}{\|{\vec {AB}}\|}}+{\frac {\vec {AC}}{\|{\vec {AC}}\|}}={\frac {2i+3j+1k}{\sqrt {2^{2}+3^{2}+1^{2}}}}+{\frac {-4i+4j-1k}{\sqrt {(-4)^{2}+4^{2}+(-1)^{2}}}}={\frac {2i+3j+1k}{\sqrt {4+9+1}}}+{\frac {-4i+4j-1k}{\sqrt {16+16+1}}}=}
=
2
i
+
3
j
+
1
k
14
+
−
4
i
+
4
j
−
1
k
33
=
2
i
14
+
−
4
i
33
+
3
j
14
+
4
j
33
+
k
14
+
−
k
33
=
2
33
−
4
14
14
⋅
33
i
+
3
33
+
4
14
14
⋅
33
j
+
33
−
14
14
⋅
33
k
=
{\displaystyle ={\frac {2i+3j+1k}{\sqrt {14}}}+{\frac {-4i+4j-1k}{\sqrt {33}}}={\frac {2i}{\sqrt {14}}}+{\frac {-4i}{\sqrt {33}}}+{\frac {3j}{\sqrt {14}}}+{\frac {4j}{\sqrt {33}}}+{\frac {k}{\sqrt {14}}}+{\frac {-k}{\sqrt {33}}}={\frac {2{\sqrt {33}}-4{\sqrt {14}}}{{\sqrt {14}}\cdot {\sqrt {33}}}}i+{\frac {3{\sqrt {33}}+4{\sqrt {14}}}{{\sqrt {14}}\cdot {\sqrt {33}}}}j+{\frac {{\sqrt {33}}-{\sqrt {14}}}{{\sqrt {14}}\cdot {\sqrt {33}}}}k=}
=
2
33
−
4
14
462
i
+
3
33
+
4
14
462
j
+
33
−
14
462
k
=
−
0.16178814
i
+
1.49809435
j
+
0.093183585
k
.
{\displaystyle ={\frac {2{\sqrt {33}}-4{\sqrt {14}}}{\sqrt {462}}}i+{\frac {3{\sqrt {33}}+4{\sqrt {14}}}{\sqrt {462}}}j+{\frac {{\sqrt {33}}-{\sqrt {14}}}{\sqrt {462}}}k=-0.16178814i+1.49809435j+0.093183585k.}
Rasime kampą tarp vektoriaus AG ={-0.16178814; 1.49809435; 0.093183585} ir vektoriaus AB ={2; 3; 1}. Taigi,
cos
ϕ
1
=
−
0.16178814
⋅
2
+
1.49809435
⋅
3
+
0.093183585
⋅
1
(
−
0.16178814
)
2
+
1.49809435
2
+
0.093183585
2
⋅
2
2
+
3
2
+
1
2
=
{\displaystyle \cos \phi _{1}={\frac {-0.16178814\cdot 2+1.49809435\cdot 3+0.093183585\cdot 1}{{\sqrt {(-0.16178814)^{2}+1.49809435^{2}+0.093183585^{2}}}\cdot {\sqrt {2^{2}+3^{2}+1^{2}}}}}=}
=
−
0.32357628
+
4.49428305
+
0.093183585
0.026175402
+
2.244286682
+
0.00868318
⋅
4
+
9
+
1
=
4.263890355
2.279145264
⋅
14
=
4.263890355
31.9080337
=
4.263890355
5.648719651
=
0.754841914.
{\displaystyle ={\frac {-0.32357628+4.49428305+0.093183585}{{\sqrt {0.026175402+2.244286682+0.00868318}}\cdot {\sqrt {4+9+1}}}}={\frac {4.263890355}{{\sqrt {2.279145264}}\cdot {\sqrt {14}}}}={\frac {4.263890355}{\sqrt {31.9080337}}}={\frac {4.263890355}{5.648719651}}=0.754841914.}
ϕ
1
=
arccos
(
0.754841914
)
=
0.715383259
{\displaystyle \phi _{1}=\arccos(0.754841914)=0.715383259}
radiano arba 40.98844149 laipsnio.
Patikrinimui, rasime kampą tarp vektoriaus AC ={-4; 4; -1} ir AB ={2; 3; 1}, taigi
cos
ϕ
2
=
(
−
4
)
⋅
2
+
4
⋅
3
+
(
−
1
)
⋅
1
(
−
4
)
2
+
4
2
+
(
−
1
)
2
⋅
2
2
+
3
2
+
1
2
=
−
8
+
12
−
1
16
+
16
+
1
⋅
4
+
9
+
1
=
3
33
⋅
14
=
3
462
=
0.139572631.
{\displaystyle \cos \phi _{2}={\frac {(-4)\cdot 2+4\cdot 3+(-1)\cdot 1}{{\sqrt {(-4)^{2}+4^{2}+(-1)^{2}}}\cdot {\sqrt {2^{2}+3^{2}+1^{2}}}}}={\frac {-8+12-1}{{\sqrt {16+16+1}}\cdot {\sqrt {4+9+1}}}}={\frac {3}{{\sqrt {33}}\cdot {\sqrt {14}}}}={\frac {3}{\sqrt {462}}}=0.139572631.}
ϕ
2
=
arccos
3
462
=
1.430766518
{\displaystyle \phi _{2}=\arccos {\frac {3}{\sqrt {462}}}=1.430766518}
radiano arba 81,97688296 laipsnio. Patikriname, kad
ϕ
2
=
2
⋅
ϕ
1
=
2
⋅
40.98844149
=
81.97688298.
{\displaystyle \phi _{2}=2\cdot \phi _{1}=2\cdot 40.98844149=81.97688298.}
Kampo tarp vektorių radimas su kosinusu
keisti
Kampas tarp dviejų vektorių yra išreiškiamas per jų skaliarinę sandaugą:
cos
ϕ
=
a
⋅
b
|
|
a
|
|
⋅
|
|
b
|
|
{\displaystyle \cos \phi ={\frac {\mathbf {a} \cdot \mathbf {b} }{||\mathbf {a} ||\cdot ||\mathbf {b} ||}}}
.
ϕ
=
arccos
a
⋅
b
|
|
a
|
|
⋅
|
|
b
|
|
.
{\displaystyle \phi =\arccos {\frac {\mathbf {a} \cdot \mathbf {b} }{||\mathbf {a} ||\cdot ||\mathbf {b} ||}}.}
Remiantis šia formule tampa akivaizdu kodėl yra sakoma, jog skaliarinė vektorių sandauga parodo vektorių atitikimą (panašumą) vienas kitam.
a
⋅
b
=
|
|
a
|
|
⋅
|
|
b
|
|
⋅
cos
ϕ
.
{\displaystyle \mathbf {a} \cdot \mathbf {b} =||\mathbf {a} ||\cdot ||\mathbf {b} ||\cdot \cos \phi .}
Pavyzdžiui, duoti vektoriai a=(1; -2; 2), b=(3; 0; -4).
cos
ϕ
=
a
⋅
b
|
|
a
|
|
⋅
|
|
b
|
|
=
1
⋅
3
+
(
−
2
)
⋅
0
+
2
⋅
(
−
4
)
1
2
+
(
−
2
)
2
+
2
2
⋅
3
2
+
0
2
+
(
−
4
)
2
=
3
−
8
1
+
4
+
4
⋅
9
+
0
+
16
=
{\displaystyle \cos \phi ={\frac {a\cdot b}{||a||\cdot ||b||}}={\frac {1\cdot 3+(-2)\cdot 0+2\cdot (-4)}{{\sqrt {1^{2}+(-2)^{2}+2^{2}}}\cdot {\sqrt {3^{2}+0^{2}+(-4)^{2}}}}}={\frac {3-8}{{\sqrt {1+4+4}}\cdot {\sqrt {9+0+16}}}}=}
=
−
5
9
⋅
25
=
−
5
3
⋅
5
=
−
1
3
.
{\displaystyle ={\frac {-5}{{\sqrt {9}}\cdot {\sqrt {25}}}}={\frac {-5}{3\cdot 5}}=-{\frac {1}{3}}.}
ϕ
=
arccos
−
1
3
=
1.910633236
{\displaystyle \phi =\arccos {\frac {-1}{3}}=1.910633236}
arba 109,4712206 laipsnių.
Taikydami kosinusų toeremą patikrinsime ar kampas
ϕ
{\displaystyle \phi }
surastas teisingai. Atkarpos f ilgis iš taško a=(1; -2; 2) iki taško b=(3; 0; -4) yra lygus
f
=
(
1
−
3
)
2
+
(
−
2
−
0
)
2
+
(
2
−
(
−
4
)
)
2
=
4
+
4
+
36
=
44
=
2
11
=
6.633249581.
{\displaystyle f={\sqrt {(1-3)^{2}+(-2-0)^{2}+(2-(-4))^{2}}}={\sqrt {4+4+36}}={\sqrt {44}}=2{\sqrt {11}}=6.633249581.}
Iš kosinusų teoremos žinome, kad
f
2
=
a
2
+
b
2
−
2
a
b
cos
(
ϕ
)
{\displaystyle f^{2}\ =a^{2}+b^{2}-2ab\cos(\phi )}
;
cos
ϕ
=
f
2
−
a
2
−
b
2
−
2
a
b
=
(
2
11
)
2
−
3
2
−
5
2
−
2
⋅
3
⋅
5
=
44
−
9
−
25
−
30
=
10
−
30
=
−
1
3
.
{\displaystyle \cos \phi ={f^{2}-a^{2}-b^{2} \over -2ab}={(2{\sqrt {11}})^{2}-3^{2}-5^{2} \over -2\cdot 3\cdot 5}={44-9-25 \over -30}={10 \over -30}=-{1 \over 3}.}
Pavyzdžiui, duoti vektoriai a=(1; -2; 0), b=(3; 0; 0).
cos
ϕ
=
a
⋅
b
|
|
a
|
|
⋅
|
|
b
|
|
=
1
⋅
3
+
(
−
2
)
⋅
0
+
0
⋅
0
1
2
+
(
−
2
)
2
⋅
3
2
+
0
2
=
3
1
+
4
⋅
9
+
0
=
{\displaystyle \cos \phi ={\frac {a\cdot b}{||a||\cdot ||b||}}={\frac {1\cdot 3+(-2)\cdot 0+0\cdot 0}{{\sqrt {1^{2}+(-2)^{2}}}\cdot {\sqrt {3^{2}+0^{2}}}}}={\frac {3}{{\sqrt {1+4}}\cdot {\sqrt {9+0}}}}=}
=
3
5
⋅
3
=
1
5
=
0
,
447213595.
{\displaystyle ={\frac {3}{{\sqrt {5}}\cdot 3}}={1 \over {\sqrt {5}}}=0,447213595.}
ϕ
=
arccos
1
5
=
1.107148718
{\displaystyle \phi =\arccos {1 \over {\sqrt {5}}}=1.107148718}
arba 63,43494882 laipsnių.
Pavyzdžiui, duoti vektoriai a =(3; 5; 11), b =(7; 8; 2).
cos
ϕ
=
a
⋅
b
|
|
a
|
|
⋅
|
|
b
|
|
=
3
⋅
7
+
5
⋅
8
+
11
⋅
2
3
2
+
5
2
+
11
2
⋅
7
2
+
8
2
+
2
2
=
21
+
40
+
22
9
+
25
+
121
⋅
49
+
64
+
4
=
{\displaystyle \cos \phi ={\frac {a\cdot b}{||a||\cdot ||b||}}={\frac {3\cdot 7+5\cdot 8+11\cdot 2}{{\sqrt {3^{2}+5^{2}+11^{2}}}\cdot {\sqrt {7^{2}+8^{2}+2^{2}}}}}={\frac {21+40+22}{{\sqrt {9+25+121}}\cdot {\sqrt {49+64+4}}}}=}
=
83
155
⋅
117
=
83
18135
=
83
134.6662541
=
0.616338521.
{\displaystyle ={\frac {83}{{\sqrt {155}}\cdot {\sqrt {117}}}}={\frac {83}{\sqrt {18135}}}={\frac {83}{134.6662541}}=0.616338521.}
ϕ
=
arccos
(
0.616338521
)
=
0.906711738
{\displaystyle \phi =\arccos(0.616338521)=0.906711738}
arba 51.95075583 laipsnių.
Taikydami kosinusų toeremą patikrinsime ar kampas
ϕ
{\displaystyle \phi }
surastas teisingai. Atkarpos f ilgis iš taško a=(3; 5; 11) iki taško b=(7; 8; 2) yra lygus
f
=
(
3
−
7
)
2
+
(
5
−
8
)
2
+
(
11
−
2
)
2
=
16
+
9
+
81
=
106
=
10.29563014.
{\displaystyle f={\sqrt {(3-7)^{2}+(5-8)^{2}+(11-2)^{2}}}={\sqrt {16+9+81}}={\sqrt {106}}=10.29563014.}
Iš kosinusų teoremos žinome, kad
f
2
=
a
2
+
b
2
−
2
a
b
cos
(
ϕ
)
{\displaystyle f^{2}\ =a^{2}+b^{2}-2ab\cos(\phi )}
;
cos
ϕ
=
f
2
−
a
2
−
b
2
−
2
a
b
=
(
106
)
2
−
(
155
)
2
−
(
117
)
2
−
2
⋅
155
⋅
117
=
106
−
155
−
117
−
2
18135
=
−
166
−
2
18135
=
{\displaystyle \cos \phi ={f^{2}-a^{2}-b^{2} \over -2ab}={({\sqrt {106}})^{2}-({\sqrt {155}})^{2}-({\sqrt {117}})^{2} \over -2\cdot {\sqrt {155}}\cdot {\sqrt {117}}}={106-155-117 \over -2{\sqrt {18135}}}={-166 \over -2{\sqrt {18135}}}=}
=
83
18135
=
0.616338521.
{\displaystyle ={83 \over {\sqrt {18135}}}=0.616338521.}
Rasti, kampą tarp vektoriaus
a
→
=
{
1
;
1
;
1
}
{\displaystyle {\vec {a}}=\{1;1;1\}}
ir vektoriaus
a
→
′
=
{
2
;
3
;
−
4
}
.
{\displaystyle {\vec {a}}'=\{2;3;-4\}.}
cos
α
=
a
→
⋅
a
→
′
‖
a
→
‖
⋅
‖
a
→
′
‖
=
1
⋅
2
+
1
⋅
3
+
1
⋅
(
−
4
)
1
2
+
1
2
+
1
2
⋅
2
2
+
3
2
+
(
−
4
)
2
=
2
+
3
−
4
1
+
1
+
1
⋅
4
+
9
+
16
=
{\displaystyle \cos \alpha ={\frac {{\vec {a}}\cdot {\vec {a}}'}{\|{\vec {a}}\|\cdot \|{\vec {a}}'\|}}={\frac {1\cdot 2+1\cdot 3+1\cdot (-4)}{{\sqrt {1^{2}+1^{2}+1^{2}}}\cdot {\sqrt {2^{2}+3^{2}+(-4)^{2}}}}}={\frac {2+3-4}{{\sqrt {1+1+1}}\cdot {\sqrt {4+9+16}}}}=}
=
1
3
⋅
29
=
1
87
=
1
9.327379053
=
0.107211253.
{\displaystyle ={\frac {1}{{\sqrt {3}}\cdot {\sqrt {29}}}}={\frac {1}{\sqrt {87}}}={\frac {1}{9.327379053}}=0.107211253.}
α
=
arccos
1
87
=
arccos
(
0.107211253
)
=
1.463378618
{\displaystyle \alpha =\arccos {\frac {1}{\sqrt {87}}}=\arccos(0.107211253)=1.463378618}
arba 83.84541865 laipsniai.
Įrodyti, kad kampas tarp vektoriaus
a
→
=
{
2
;
2
t
;
−
t
2
}
{\displaystyle {\vec {a}}=\{2;2t;-t^{2}\}}
orto
a
→
∘
=
{
2
2
+
t
2
;
2
t
2
+
t
2
;
−
t
2
2
+
t
2
}
{\displaystyle {\vec {a}}^{\circ }=\{{\frac {2}{2+t^{2}}};{\frac {2t}{2+t^{2}}};{\frac {-t^{2}}{2+t^{2}}}\}}
ir vektoriaus
a
→
{\displaystyle {\vec {a}}}
orto išvestinės lygus 90 laipsnių, kai parametras
t
=
1
{\displaystyle t=1}
.
‖
a
→
‖
=
2
2
+
(
2
t
)
2
+
(
−
t
2
)
2
=
4
+
4
t
2
+
t
4
=
(
t
2
+
2
)
2
=
t
2
+
2.
{\displaystyle \|{\vec {a}}\|={\sqrt {2^{2}+(2t)^{2}+(-t^{2})^{2}}}={\sqrt {4+4t^{2}+t^{4}}}={\sqrt {(t^{2}+2)^{2}}}=t^{2}+2.}
Sprendimas .
Vektoriaus
a
→
∘
{\displaystyle {\vec {a}}^{\circ }}
išvestinė yra:
(
a
→
∘
)
′
=
{
(
2
2
+
t
2
)
′
;
(
2
t
2
+
t
2
)
′
;
(
−
t
2
2
+
t
2
)
′
}
=
{
−
2
⋅
2
t
(
2
+
t
2
)
2
;
2
(
2
+
t
2
)
−
2
t
⋅
2
t
(
2
+
t
2
)
2
;
−
2
t
(
2
+
t
2
)
−
(
−
t
2
)
⋅
2
t
(
2
+
t
2
)
2
}
=
{\displaystyle ({\vec {a}}^{\circ })'=\{({\frac {2}{2+t^{2}}})';({\frac {2t}{2+t^{2}}})';({\frac {-t^{2}}{2+t^{2}}})'\}=\{-{\frac {2\cdot 2t}{(2+t^{2})^{2}}};{\frac {2(2+t^{2})-2t\cdot 2t}{(2+t^{2})^{2}}};{\frac {-2t(2+t^{2})-(-t^{2})\cdot 2t}{(2+t^{2})^{2}}}\}=}
=
{
−
4
t
(
2
+
t
2
)
2
;
4
−
2
t
2
(
2
+
t
2
)
2
;
−
4
t
(
2
+
t
2
)
2
}
.
{\displaystyle =\{{\frac {-4t}{(2+t^{2})^{2}}};{\frac {4-2t^{2}}{(2+t^{2})^{2}}};{\frac {-4t}{(2+t^{2})^{2}}}\}.}
Randame vektorių reikšmes taške
M
1
(
1
;
1
;
1
)
{\displaystyle M_{1}(1;1;1)}
:
a
→
∘
|
t
=
1
=
{
2
2
+
1
2
;
2
⋅
1
2
+
1
2
;
−
1
2
2
+
1
2
}
=
{
2
3
;
2
3
;
−
1
3
}
;
{\displaystyle {\vec {a}}^{\circ }|_{t=1}=\{{\frac {2}{2+1^{2}}};{\frac {2\cdot 1}{2+1^{2}}};{\frac {-1^{2}}{2+1^{2}}}\}=\{{\frac {2}{3}};{\frac {2}{3}};{\frac {-1}{3}}\};}
(
a
→
∘
)
′
|
t
=
1
=
{
−
4
⋅
1
(
2
+
1
2
)
2
;
4
−
2
⋅
1
2
(
2
+
1
2
)
2
;
−
4
⋅
1
(
2
+
1
2
)
2
}
=
{
−
4
9
;
2
9
;
−
4
9
}
.
{\displaystyle ({\vec {a}}^{\circ })'|_{t=1}=\{{\frac {-4\cdot 1}{(2+1^{2})^{2}}};{\frac {4-2\cdot 1^{2}}{(2+1^{2})^{2}}};{\frac {-4\cdot 1}{(2+1^{2})^{2}}}\}=\{{\frac {-4}{9}};{\frac {2}{9}};{\frac {-4}{9}}\}.}
Randame kampą tarp vektoriaus
a
→
∘
{\displaystyle {\vec {a}}^{\circ }}
ir vektoriaus
(
a
→
∘
)
′
{\displaystyle ({\vec {a}}^{\circ })'}
taške
M
1
(
1
;
1
;
1
)
{\displaystyle M_{1}(1;1;1)}
:
cos
α
=
a
→
∘
|
t
=
1
⋅
(
a
→
∘
)
′
|
t
=
1
‖
a
→
∘
|
t
=
1
‖
⋅
‖
(
a
→
∘
)
′
|
t
=
1
‖
=
2
3
⋅
−
4
9
+
2
3
⋅
2
9
+
−
1
3
⋅
−
4
9
(
2
3
)
2
+
(
2
3
)
2
+
(
−
1
3
)
2
⋅
(
−
4
9
)
2
+
(
2
9
)
2
+
(
−
4
9
)
2
=
−
8
27
+
4
27
+
4
27
4
9
+
4
9
+
1
9
⋅
16
81
+
4
81
+
16
81
=
{\displaystyle \cos \alpha ={\frac {{\vec {a}}^{\circ }|_{t=1}\cdot ({\vec {a}}^{\circ })'|_{t=1}}{\|{\vec {a}}^{\circ }|_{t=1}\|\cdot \|({\vec {a}}^{\circ })'|_{t=1}\|}}={\frac {{\frac {2}{3}}\cdot {\frac {-4}{9}}+{\frac {2}{3}}\cdot {\frac {2}{9}}+{\frac {-1}{3}}\cdot {\frac {-4}{9}}}{{\sqrt {({\frac {2}{3}})^{2}+({\frac {2}{3}})^{2}+({\frac {-1}{3}})^{2}}}\cdot {\sqrt {({\frac {-4}{9}})^{2}+({\frac {2}{9}})^{2}+({\frac {-4}{9}})^{2}}}}}={\frac {{\frac {-8}{27}}+{\frac {4}{27}}+{\frac {4}{27}}}{{\sqrt {{\frac {4}{9}}+{\frac {4}{9}}+{\frac {1}{9}}}}\cdot {\sqrt {{\frac {16}{81}}+{\frac {4}{81}}+{\frac {16}{81}}}}}}=}
=
0
1
⋅
36
81
=
0
1
⋅
6
9
=
0
2
3
=
0.
{\displaystyle ={\frac {0}{{\sqrt {1}}\cdot {\sqrt {\frac {36}{81}}}}}={\frac {0}{1\cdot {\frac {6}{9}}}}={\frac {0}{\frac {2}{3}}}=0.}
α
=
arccos
(
0
)
=
π
2
=
1.570796327
{\displaystyle \alpha =\arccos(0)={\frac {\pi }{2}}=1.570796327}
arba 90 laipsnių.
Duota kreivė užrašyta parametrinėmis lygtimis
x
=
ϕ
(
t
)
=
t
,
y
=
ψ
(
t
)
=
t
2
,
z
=
ω
(
t
)
=
t
3
.
{\displaystyle x=\phi (t)=t,\quad y=\psi (t)=t^{2},\quad z=\omega (t)=t^{3}.}
Rasti:
a) kreivės liestinės vektorių;
b) normalizuotą kreivės liestinės vektorių (ortą);
c) kreivės normalės vektorių iš normalizuoto liestinės vektoriaus;
d) kampą tarp liestinės orto (vektoriaus) ir normalės vektoriaus, kai parametro t reikšmė lygi 1 (kai
t
=
1
{\displaystyle t=1}
);
e) kampą tarp liestinės vektoriaus ir normalės vektoriaus, kai
t
=
1
{\displaystyle t=1}
, naudojantis normalės vektororiaus formule
n
=
{
1
±
ϕ
′
(
t
)
;
1
±
ψ
′
(
t
)
;
1
±
ω
′
(
t
)
}
,
{\displaystyle \mathbf {n} =\{{\frac {1}{\pm \phi '(t)}};{\frac {1}{\pm \psi '(t)}};{\frac {1}{\pm \omega '(t)}}\},}
kuri šiai kreivei yra
n
=
{
2
−
3
ϕ
′
(
t
)
;
1
3
ψ
′
(
t
)
;
1
3
ω
′
(
t
)
}
;
{\displaystyle \mathbf {n} =\{{\frac {2}{-3\phi '(t)}};{\frac {1}{3\psi '(t)}};{\frac {1}{3\omega '(t)}}\};}
padauginti iš
2
3
{\displaystyle {\frac {2}{3}}}
reikia tą funkciją, kurios rodiklis ant t mažiausias; kadangi
x
=
ϕ
(
t
)
{\displaystyle x=\phi (t)}
reikia prilyginti t , jei
ϕ
(
t
)
{\displaystyle \phi (t)}
turi mažiausią rodiklį virš t , tai gaunasi, kad parametro t ir
ϕ
(
t
)
{\displaystyle \phi (t)}
reikšmė nekinta (funkcijos
ϕ
(
t
)
=
t
{\displaystyle \phi (t)=t}
kitimo greitis visose taškuose lygus nuliui, nes
ϕ
′
(
t
)
=
t
′
=
1
{\displaystyle \phi '(t)=t'=1}
), bet linija vis tiek kyla aukštyn, todėl tą linijos kilimą reikia kompensuoti
1
3
{\displaystyle {\frac {1}{3}}}
(nes trys koordinačių ašys), kad tikrai būtų liestinės normalė, bet taip padaryti galima tik padarius
1
/
ϕ
′
(
t
)
{\displaystyle 1/\phi '(t)}
reikšmę viena trečiąja didesne.
f) kampą tarp liestinės vektoriaus ir normalės vektoriaus, kai
t
=
5
{\displaystyle t=5}
, naudojantis normalės vektororiaus formule
n
=
{
2
−
3
ϕ
′
(
t
)
;
1
3
ψ
′
(
t
)
;
1
3
ω
′
(
t
)
}
.
{\displaystyle \mathbf {n} =\{{\frac {2}{-3\phi '(t)}};{\frac {1}{3\psi '(t)}};{\frac {1}{3\omega '(t)}}\}.}
Sprendimas .
a) Kreivės liestinės vektorius yra
a
=
{
t
′
;
(
t
2
)
′
;
(
t
3
)
′
}
=
{
1
;
2
t
;
3
t
2
}
.
{\displaystyle \mathbf {a} =\{t';(t^{2})';(t^{3})'\}=\{1;2t;3t^{2}\}.}
b) Vektoriaus
a
{\displaystyle \mathbf {a} }
ilgis yra:
‖
a
‖
=
1
2
+
(
2
t
)
2
+
(
3
t
2
)
2
=
1
+
4
t
2
+
9
t
4
.
{\displaystyle \|\mathbf {a} \|={\sqrt {1^{2}+(2t)^{2}+(3t^{2})^{2}}}={\sqrt {1+4t^{2}+9t^{4}}}.}
Kreivės liestinės normalizuotas vektorius yra šis:
a
∘
=
a
‖
a
‖
=
{
1
1
+
4
t
2
+
9
t
4
;
2
t
1
+
4
t
2
+
9
t
4
;
3
t
2
1
+
4
t
2
+
9
t
4
}
;
{\displaystyle \mathbf {a} ^{\circ }={\frac {\mathbf {a} }{\|\mathbf {a} \|}}=\{{\frac {1}{\sqrt {1+4t^{2}+9t^{4}}}};{\frac {2t}{\sqrt {1+4t^{2}+9t^{4}}}};{\frac {3t^{2}}{\sqrt {1+4t^{2}+9t^{4}}}}\};}
jo reikšmė, kai
t
=
1
{\displaystyle t=1}
yra
a
∘
|
t
=
1
=
{
1
1
+
4
+
9
;
2
1
+
4
+
9
;
3
1
+
4
+
9
}
,
{\displaystyle \mathbf {a} ^{\circ }|_{t=1}=\{{\frac {1}{\sqrt {1+4+9}}};{\frac {2}{\sqrt {1+4+9}}};{\frac {3}{\sqrt {1+4+9}}}\},}
a
∘
|
t
=
1
=
{
1
14
;
2
14
;
3
14
}
=
{
0.267261241
;
0.534522483
;
0.801783725
}
.
{\displaystyle \mathbf {a} ^{\circ }|_{t=1}=\{{\frac {1}{\sqrt {14}}};{\frac {2}{\sqrt {14}}};{\frac {3}{\sqrt {14}}}\}=\{0.267261241;0.534522483;0.801783725\}.}
c) Kreivės normalės vektorius yra liestinės vektoriaus orto išvestinė:
n
=
(
a
∘
)
′
=
{
(
1
1
+
4
t
2
+
9
t
4
)
′
;
(
2
t
1
+
4
t
2
+
9
t
4
)
′
;
(
3
t
2
1
+
4
t
2
+
9
t
4
)
′
}
,
{\displaystyle \mathbf {n} =(\mathbf {a} ^{\circ })'=\{({\frac {1}{\sqrt {1+4t^{2}+9t^{4}}}})';({\frac {2t}{\sqrt {1+4t^{2}+9t^{4}}}})';({\frac {3t^{2}}{\sqrt {1+4t^{2}+9t^{4}}}})'\},}
n
=
{
−
(
1
+
4
t
2
+
9
t
4
)
′
2
(
1
+
4
t
2
+
9
t
4
)
3
;
(
2
t
)
′
1
+
4
t
2
+
9
t
4
−
2
t
(
1
+
4
t
2
+
9
t
4
)
′
(
1
+
4
t
2
+
9
t
4
)
2
;
(
3
t
2
)
′
1
+
4
t
2
+
9
t
4
−
3
t
2
(
1
+
4
t
2
+
9
t
4
)
′
(
1
+
4
t
2
+
9
t
4
)
2
}
,
{\displaystyle \mathbf {n} =\{-{\frac {(1+4t^{2}+9t^{4})'}{2{\sqrt {(1+4t^{2}+9t^{4})^{3}}}}};{\frac {(2t)'{\sqrt {1+4t^{2}+9t^{4}}}-2t({\sqrt {1+4t^{2}+9t^{4}}})'}{({\sqrt {1+4t^{2}+9t^{4}}})^{2}}};{\frac {(3t^{2})'{\sqrt {1+4t^{2}+9t^{4}}}-3t^{2}({\sqrt {1+4t^{2}+9t^{4}}})'}{({\sqrt {1+4t^{2}+9t^{4}}})^{2}}}\},}
n
=
{
−
8
t
+
36
t
3
2
(
1
+
4
t
2
+
9
t
4
)
3
;
2
1
+
4
t
2
+
9
t
4
−
2
t
⋅
(
1
+
4
t
2
+
9
t
4
)
′
2
1
+
4
t
2
+
9
t
4
1
+
4
t
2
+
9
t
4
;
6
t
1
+
4
t
2
+
9
t
4
−
3
t
2
⋅
(
1
+
4
t
2
+
9
t
4
)
′
2
1
+
4
t
2
+
9
t
4
1
+
4
t
2
+
9
t
4
}
,
{\displaystyle \mathbf {n} =\{-{\frac {8t+36t^{3}}{2{\sqrt {(1+4t^{2}+9t^{4})^{3}}}}};{\frac {2{\sqrt {1+4t^{2}+9t^{4}}}-2t\cdot {\frac {(1+4t^{2}+9t^{4})'}{2{\sqrt {1+4t^{2}+9t^{4}}}}}}{1+4t^{2}+9t^{4}}};{\frac {6t{\sqrt {1+4t^{2}+9t^{4}}}-3t^{2}\cdot {\frac {(1+4t^{2}+9t^{4})'}{2{\sqrt {1+4t^{2}+9t^{4}}}}}}{1+4t^{2}+9t^{4}}}\},}
n
=
{
−
8
t
+
36
t
3
2
(
1
+
4
t
2
+
9
t
4
)
3
;
2
1
+
4
t
2
+
9
t
4
−
2
t
⋅
8
t
+
36
t
3
2
1
+
4
t
2
+
9
t
4
1
+
4
t
2
+
9
t
4
;
6
t
1
+
4
t
2
+
9
t
4
−
3
t
2
⋅
8
t
+
36
t
3
2
1
+
4
t
2
+
9
t
4
1
+
4
t
2
+
9
t
4
}
,
{\displaystyle \mathbf {n} =\{-{\frac {8t+36t^{3}}{2{\sqrt {(1+4t^{2}+9t^{4})^{3}}}}};{\frac {2{\sqrt {1+4t^{2}+9t^{4}}}-2t\cdot {\frac {8t+36t^{3}}{2{\sqrt {1+4t^{2}+9t^{4}}}}}}{1+4t^{2}+9t^{4}}};{\frac {6t{\sqrt {1+4t^{2}+9t^{4}}}-3t^{2}\cdot {\frac {8t+36t^{3}}{2{\sqrt {1+4t^{2}+9t^{4}}}}}}{1+4t^{2}+9t^{4}}}\},}
n
=
{
−
8
t
+
36
t
3
2
(
1
+
4
t
2
+
9
t
4
)
3
;
2
1
+
4
t
2
+
9
t
4
−
2
t
⋅
8
t
+
36
t
3
2
(
1
+
4
t
2
+
9
t
4
)
3
;
6
t
1
+
4
t
2
+
9
t
4
−
3
t
2
⋅
8
t
+
36
t
3
2
(
1
+
4
t
2
+
9
t
4
)
3
}
,
{\displaystyle \mathbf {n} =\{-{\frac {8t+36t^{3}}{2{\sqrt {(1+4t^{2}+9t^{4})^{3}}}}};{\frac {2}{\sqrt {1+4t^{2}+9t^{4}}}}-2t\cdot {\frac {8t+36t^{3}}{2{\sqrt {(1+4t^{2}+9t^{4})^{3}}}}};{\frac {6t}{\sqrt {1+4t^{2}+9t^{4}}}}-3t^{2}\cdot {\frac {8t+36t^{3}}{2{\sqrt {(1+4t^{2}+9t^{4})^{3}}}}}\},}
n
=
{
−
4
t
+
18
t
3
(
1
+
4
t
2
+
9
t
4
)
3
;
2
1
+
4
t
2
+
9
t
4
−
2
t
(
4
t
+
18
t
3
)
(
1
+
4
t
2
+
9
t
4
)
3
;
6
t
1
+
4
t
2
+
9
t
4
−
3
t
2
(
4
t
+
18
t
3
)
(
1
+
4
t
2
+
9
t
4
)
3
}
;
{\displaystyle \mathbf {n} =\{-{\frac {4t+18t^{3}}{\sqrt {(1+4t^{2}+9t^{4})^{3}}}};{\frac {2}{\sqrt {1+4t^{2}+9t^{4}}}}-{\frac {2t(4t+18t^{3})}{\sqrt {(1+4t^{2}+9t^{4})^{3}}}};{\frac {6t}{\sqrt {1+4t^{2}+9t^{4}}}}-{\frac {3t^{2}(4t+18t^{3})}{\sqrt {(1+4t^{2}+9t^{4})^{3}}}}\};}
su reikšme
t
=
1
{\displaystyle t=1}
kreivės normalės vektorius statmenas liestienei yra:
n
|
t
=
1
=
{
−
4
+
18
(
1
+
4
+
9
)
3
;
2
1
+
4
+
9
−
2
(
4
+
18
)
(
1
+
4
+
9
)
3
;
6
1
+
4
+
9
−
3
(
4
+
18
)
(
1
+
4
+
9
)
3
}
,
{\displaystyle \mathbf {n} |_{t=1}=\{-{\frac {4+18}{\sqrt {(1+4+9)^{3}}}};{\frac {2}{\sqrt {1+4+9}}}-{\frac {2(4+18)}{\sqrt {(1+4+9)^{3}}}};{\frac {6}{\sqrt {1+4+9}}}-{\frac {3(4+18)}{\sqrt {(1+4+9)^{3}}}}\},}
n
|
t
=
1
=
{
−
22
14
3
;
2
14
−
2
⋅
22
14
3
;
6
14
−
3
⋅
22
14
3
}
,
{\displaystyle \mathbf {n} |_{t=1}=\{-{\frac {22}{\sqrt {14^{3}}}};{\frac {2}{\sqrt {14}}}-{\frac {2\cdot 22}{\sqrt {14^{3}}}};{\frac {6}{\sqrt {14}}}-{\frac {3\cdot 22}{\sqrt {14^{3}}}}\},}
n
|
t
=
1
=
{
−
22
2744
;
2
14
−
44
2744
;
6
14
−
66
2744
}
,
{\displaystyle \mathbf {n} |_{t=1}=\{-{\frac {22}{\sqrt {2744}}};{\frac {2}{\sqrt {14}}}-{\frac {44}{\sqrt {2744}}};{\frac {6}{\sqrt {14}}}-{\frac {66}{\sqrt {2744}}}\},}
n
|
t
=
1
=
{
−
22
52.38320341
;
2
3.741657387
−
44
52.38320341
;
6
3.741657387
−
66
52.38320341
}
,
{\displaystyle \mathbf {n} |_{t=1}=\{-{\frac {22}{52.38320341}};{\frac {2}{3.741657387}}-{\frac {44}{52.38320341}};{\frac {6}{3.741657387}}-{\frac {66}{52.38320341}}\},}
n
|
t
=
1
=
{
−
0.419981951
;
0.534522483
−
0.839963903
;
1.603567451
−
1.259945855
}
,
{\displaystyle \mathbf {n} |_{t=1}=\{-0.419981951;0.534522483-0.839963903;1.603567451-1.259945855\},}
n
|
t
=
1
=
{
−
0.419981951
;
−
0.305441419
;
0.343621596
}
;
{\displaystyle \mathbf {n} |_{t=1}=\{-0.419981951;-0.305441419;0.343621596\};}
normalizuotas kreivės normalės vektorius yra šis:
n
∘
|
t
=
1
=
n
|
t
=
1
(
−
0.419981951
)
2
+
(
−
0.305441419
)
2
+
(
0.343621596
)
2
,
{\displaystyle \mathbf {n} ^{\circ }|_{t=1}={\frac {\mathbf {n} |_{t=1}}{\sqrt {(-0.419981951)^{2}+(-0.305441419)^{2}+(0.343621596)^{2}}}},}
n
∘
|
t
=
1
=
n
|
t
=
1
0.17638484
+
0.093294461
+
0.118075802
=
n
|
t
=
1
0.387755103
=
n
|
t
=
1
0.62269985
,
{\displaystyle \mathbf {n} ^{\circ }|_{t=1}={\frac {\mathbf {n} |_{t=1}}{\sqrt {0.17638484+0.093294461+0.118075802}}}={\frac {\mathbf {n} |_{t=1}}{\sqrt {0.387755103}}}={\frac {\mathbf {n} |_{t=1}}{0.62269985}},}
n
∘
|
t
=
1
=
{
−
0.419981951
0.62269985
;
−
0.305441419
0.62269985
;
0.343621596
0.62269985
}
=
{
−
0.674453271
;
−
0.49051147
;
0.551825403
}
.
{\displaystyle \mathbf {n} ^{\circ }|_{t=1}=\{{\frac {-0.419981951}{0.62269985}};{\frac {-0.305441419}{0.62269985}};{\frac {0.343621596}{0.62269985}}\}=\{-0.674453271;-0.49051147;0.551825403\}.}
d) Kampas
α
{\displaystyle \alpha }
tarp kreivės liestinės normalizuoto vektoriaus ir kreivės normalės vektoriaus yra toks:
cos
α
=
a
∘
|
t
=
1
⋅
n
∘
|
t
=
1
‖
a
∘
|
t
=
1
‖
⋅
‖
n
∘
|
t
=
1
‖
=
{\displaystyle \cos \alpha ={\frac {\mathbf {a} ^{\circ }|_{t=1}\cdot \mathbf {n} ^{\circ }|_{t=1}}{\|\mathbf {a} ^{\circ }|_{t=1}\|\cdot \|\mathbf {n} ^{\circ }|_{t=1}\|}}=}
=
0.267261241
⋅
(
−
0.674453271
)
+
0.534522483
⋅
(
−
0.49051147
)
+
0.801783725
⋅
0.551825403
1
⋅
1
=
{\displaystyle ={\frac {0.267261241\cdot (-0.674453271)+0.534522483\cdot (-0.49051147)+0.801783725\cdot 0.551825403}{{\sqrt {1}}\cdot {\sqrt {1}}}}=}
=
−
0.180255218
−
0.262189408
+
0.442444627
=
−
0.442444626
+
0.442444627
=
0.000000001
=
0
;
{\displaystyle =-0.180255218-0.262189408+0.442444627=-0.442444626+0.442444627=0.000000001=0;}
α
=
arccos
(
0
)
=
π
2
=
1.570796327
{\displaystyle \alpha =\arccos(0)={\frac {\pi }{2}}=1.570796327}
arba 90 laipsnių.
e) Kreivės liestinės vektorius yra
a
=
{
1
;
2
t
;
3
t
2
}
;
{\displaystyle \mathbf {a} =\{1;2t;3t^{2}\};}
kreivės liestinės vektorius, kai
t
=
1
{\displaystyle t=1}
yra:
a
|
t
=
1
=
{
1
;
2
;
3
}
;
{\displaystyle \mathbf {a} |_{t=1}=\{1;2;3\};}
kreivės liestinės vektoriaus ortas, kai
t
=
1
{\displaystyle t=1}
, yra:
a
∘
|
t
=
1
=
{
1
1
+
4
+
9
;
2
1
+
4
+
9
;
3
1
+
4
+
9
}
,
{\displaystyle \mathbf {a} ^{\circ }|_{t=1}=\{{\frac {1}{\sqrt {1+4+9}}};{\frac {2}{\sqrt {1+4+9}}};{\frac {3}{\sqrt {1+4+9}}}\},}
a
∘
|
t
=
1
=
{
1
14
;
2
14
;
3
14
}
=
{
0.267261241
;
0.534522483
;
0.801783725
}
.
{\displaystyle \mathbf {a} ^{\circ }|_{t=1}=\{{\frac {1}{\sqrt {14}}};{\frac {2}{\sqrt {14}}};{\frac {3}{\sqrt {14}}}\}=\{0.267261241;0.534522483;0.801783725\}.}
kreivės pseudonormalės vektorius yra:
p
=
{
1
−
ϕ
′
(
t
)
;
1
ψ
′
(
t
)
;
1
ω
′
(
t
)
=
{
−
1
;
1
2
t
;
1
3
t
}
;
{\displaystyle \mathbf {p} =\{{\frac {1}{-\phi '(t)}};{\frac {1}{\psi '(t)}};{\frac {1}{\omega '(t)}}=\{-1;{\frac {1}{2t}};{\frac {1}{3t}}\};}
kreivės normalės vektorius yra:
n
=
{
2
−
3
ϕ
′
(
t
)
;
1
3
ψ
′
(
t
)
;
1
3
ω
′
(
t
)
=
{
−
2
3
;
1
6
t
;
1
9
t
2
}
;
{\displaystyle \mathbf {n} =\{{\frac {2}{-3\phi '(t)}};{\frac {1}{3\psi '(t)}};{\frac {1}{3\omega '(t)}}=\{-{\frac {2}{3}};{\frac {1}{6t}};{\frac {1}{9t^{2}}}\};}
kreivės pseudonormalės vektorius, kai
t
=
1
{\displaystyle t=1}
, yra:
p
|
t
=
1
=
{
−
1
;
1
2
;
1
3
}
;
{\displaystyle \mathbf {p} |_{t=1}=\{-1;{\frac {1}{2}};{\frac {1}{3}}\};}
kreivės normalės vektorius, kai
t
=
1
{\displaystyle t=1}
, yra:
n
|
t
=
1
=
{
−
2
3
;
1
6
;
1
9
}
;
{\displaystyle \mathbf {n} |_{t=1}=\{-{\frac {2}{3}};{\frac {1}{6}};{\frac {1}{9}}\};}
kreivės pseudonormalės normalizuotas vektorius, kai
t
=
1
{\displaystyle t=1}
yra:
p
∘
|
t
=
1
=
{
−
1
(
−
1
)
2
+
(
1
2
)
2
+
(
1
3
)
2
;
1
2
(
−
1
)
2
+
(
1
2
)
2
+
(
1
3
)
2
;
1
3
(
−
1
)
2
+
(
1
2
)
2
+
(
1
3
)
2
}
,
{\displaystyle \mathbf {p} ^{\circ }|_{t=1}=\{{\frac {-1}{\sqrt {(-1)^{2}+({1 \over 2})^{2}+({1 \over 3})^{2}}}};{\frac {\frac {1}{2}}{\sqrt {(-1)^{2}+({1 \over 2})^{2}+({1 \over 3})^{2}}}};{\frac {\frac {1}{3}}{\sqrt {(-1)^{2}+({1 \over 2})^{2}+({1 \over 3})^{2}}}}\},}
p
∘
|
t
=
1
=
{
−
1
1
+
1
4
+
1
9
;
1
2
1
+
1
4
+
1
9
;
1
3
1
+
1
4
+
1
9
}
=
{
−
1
36
+
9
+
4
36
;
1
2
36
+
9
+
4
36
;
1
3
36
+
9
+
4
36
}
,
{\displaystyle \mathbf {p} ^{\circ }|_{t=1}=\{{\frac {-1}{\sqrt {1+{1 \over 4}+{1 \over 9}}}};{\frac {\frac {1}{2}}{\sqrt {1+{1 \over 4}+{1 \over 9}}}};{\frac {\frac {1}{3}}{\sqrt {1+{1 \over 4}+{1 \over 9}}}}\}=\{{\frac {-1}{\sqrt {36+9+4 \over 36}}};{\frac {\frac {1}{2}}{\sqrt {36+9+4 \over 36}}};{\frac {\frac {1}{3}}{\sqrt {36+9+4 \over 36}}}\},}
p
∘
|
t
=
1
=
{
−
1
49
36
;
1
2
49
36
;
1
3
49
36
}
=
{
−
1
7
6
;
1
2
7
6
;
1
3
7
6
}
,
{\displaystyle \mathbf {p} ^{\circ }|_{t=1}=\{{\frac {-1}{\sqrt {49 \over 36}}};{\frac {\frac {1}{2}}{\sqrt {49 \over 36}}};{\frac {\frac {1}{3}}{\sqrt {49 \over 36}}}\}=\{{\frac {-1}{7 \over 6}};{\frac {\frac {1}{2}}{7 \over 6}};{\frac {\frac {1}{3}}{7 \over 6}}\},}
p
∘
|
t
=
1
=
{
−
6
7
;
6
14
;
6
21
}
=
{
−
0.857142857
;
0.428571428
;
0.285714285
}
;
{\displaystyle \mathbf {p} ^{\circ }|_{t=1}=\{{\frac {-6}{7}};{\frac {6}{14}};{\frac {6}{21}}\}=\{-0.857142857;0.428571428;0.285714285\};}
kreivės normalės normalizuotas vektorius, kai
t
=
1
{\displaystyle t=1}
yra:
n
∘
|
t
=
1
=
{
−
2
3
(
−
2
3
)
2
+
(
1
6
)
2
+
(
1
9
)
2
;
1
6
(
−
2
3
)
2
+
(
1
6
)
2
+
(
1
9
)
2
;
1
9
(
−
2
3
)
2
+
(
1
6
)
2
+
(
1
9
)
2
}
,
{\displaystyle \mathbf {n} ^{\circ }|_{t=1}=\{{\frac {-{\frac {2}{3}}}{\sqrt {(-{\frac {2}{3}})^{2}+({1 \over 6})^{2}+({1 \over 9})^{2}}}};{\frac {\frac {1}{6}}{\sqrt {(-{\frac {2}{3}})^{2}+({1 \over 6})^{2}+({1 \over 9})^{2}}}};{\frac {\frac {1}{9}}{\sqrt {(-{\frac {2}{3}})^{2}+({1 \over 6})^{2}+({1 \over 9})^{2}}}}\},}
n
∘
|
t
=
1
=
{
−
2
3
4
9
+
1
36
+
1
81
;
1
6
4
9
+
1
36
+
1
81
;
1
9
4
9
+
1
36
+
1
81
}
=
{
−
2
3
4
⋅
36
+
9
+
4
324
;
1
2
144
+
9
+
4
324
;
1
3
144
+
9
+
4
324
}
,
{\displaystyle \mathbf {n} ^{\circ }|_{t=1}=\{{\frac {-{\frac {2}{3}}}{\sqrt {{4 \over 9}+{1 \over 36}+{1 \over 81}}}};{\frac {\frac {1}{6}}{\sqrt {{4 \over 9}+{1 \over 36}+{1 \over 81}}}};{\frac {\frac {1}{9}}{\sqrt {{4 \over 9}+{1 \over 36}+{1 \over 81}}}}\}=\{{\frac {-{\frac {2}{3}}}{\sqrt {4\cdot 36+9+4 \over 324}}};{\frac {\frac {1}{2}}{\sqrt {144+9+4 \over 324}}};{\frac {\frac {1}{3}}{\sqrt {144+9+4 \over 324}}}\},}
n
∘
|
t
=
1
=
{
−
2
3
157
324
;
1
6
157
324
;
1
9
157
324
}
=
{
−
2
⋅
18
3
⋅
157
;
18
6
⋅
157
;
18
9
⋅
157
}
,
{\displaystyle \mathbf {n} ^{\circ }|_{t=1}=\{{\frac {-{\frac {2}{3}}}{\sqrt {157 \over 324}}};{\frac {\frac {1}{6}}{\sqrt {157 \over 324}}};{\frac {\frac {1}{9}}{\sqrt {157 \over 324}}}\}=\{-{2\cdot 18 \over 3\cdot {\sqrt {157}}};{\frac {18}{6\cdot {\sqrt {157}}}};{\frac {18}{9\cdot {\sqrt {157}}}}\},}
n
∘
|
t
=
1
=
{
−
12
157
;
3
157
;
2
157
}
=
{
−
0.957704261
;
0.239426065
;
0.159617376
}
;
{\displaystyle \mathbf {n} ^{\circ }|_{t=1}=\{{\frac {-12}{\sqrt {157}}};{\frac {3}{\sqrt {157}}};{\frac {2}{\sqrt {157}}}\}=\{-0.957704261;0.239426065;0.159617376\};}
kampas tarp pseudonormalės ir liestinės vektorių yra:
cos
α
=
0.267261241
⋅
(
−
0.857142857
)
+
0.534522483
⋅
0.428571428
+
0.801783725
⋅
0.285714285
=
{\displaystyle \cos \alpha =0.267261241\cdot (-0.857142857)+0.534522483\cdot 0.428571428+0.801783725\cdot 0.285714285=}
=
−
0.229081063
+
0.229081063
+
0.229081063
=
0.229081063
;
{\displaystyle =-0.229081063+0.229081063+0.229081063=0.229081063;}
α
=
arccos
(
0.229081063
)
=
1.33966279
{\displaystyle \alpha =\arccos(0.229081063)=1.33966279}
arba 76.75702383 laipsniai;
kampas tarp liestinės ir normalės vektoriaus yra:
cos
θ
=
0.267261241
⋅
(
−
0.957704261
)
+
0.534522483
⋅
0.239426065
+
0.801783725
⋅
0.159617376
=
{\displaystyle \cos \theta =0.267261241\cdot (-0.957704261)+0.534522483\cdot 0.239426065+0.801783725\cdot 0.159617376=}
=
−
0.255957229
+
0.127978614
+
0.127978614
=
−
0.255957229
+
0.255957229
=
0
;
{\displaystyle =-0.255957229+0.127978614+0.127978614=-0.255957229+0.255957229=0;}
θ
=
arccos
(
0
)
=
π
2
{\displaystyle \theta =\arccos(0)={\frac {\pi }{2}}}
arba 90 laipsnių.
f) Kampas tarp pseudonormalės ir liestinės yra
α
=
84.44409162
{\displaystyle \alpha =84.44409162}
laipsniai;
kreivės normalės vektorius yra:
n
=
{
2
−
3
ϕ
′
(
t
)
;
1
3
ψ
′
(
t
)
;
1
3
ω
′
(
t
)
=
{
−
2
3
;
1
6
t
;
1
9
t
2
}
;
{\displaystyle \mathbf {n} =\{{\frac {2}{-3\phi '(t)}};{\frac {1}{3\psi '(t)}};{\frac {1}{3\omega '(t)}}=\{-{\frac {2}{3}};{\frac {1}{6t}};{\frac {1}{9t^{2}}}\};}
kreivės normalės vektorius, kai
t
=
5
{\displaystyle t=5}
yra:
n
=
{
−
2
3
;
1
6
⋅
5
;
1
9
⋅
5
2
}
=
{
−
2
3
;
1
30
;
1
225
}
;
{\displaystyle \mathbf {n} =\{-{\frac {2}{3}};{\frac {1}{6\cdot 5}};{\frac {1}{9\cdot 5^{2}}}\}=\{-{\frac {2}{3}};{\frac {1}{30}};{\frac {1}{225}}\};}
kreivės liestinės vektorius yra
a
=
{
1
;
2
t
;
3
t
2
}
;
{\displaystyle \mathbf {a} =\{1;2t;3t^{2}\};}
kreivės liestinės vektorius, kai
t
=
5
{\displaystyle t=5}
yra
a
=
{
1
;
2
⋅
5
;
3
⋅
5
2
}
=
{
1
;
10
;
75
}
;
{\displaystyle \mathbf {a} =\{1;2\cdot 5;3\cdot 5^{2}\}=\{1;10;75\};}
Jeigu vektorių skaliarinė sandauga lygi nuliui, tai vektoriai yra statmeni vienas kitam:
a
⋅
n
=
1
⋅
(
−
2
3
)
+
10
⋅
1
30
+
75
⋅
1
225
=
−
2
3
+
1
3
+
1
3
=
0.
{\displaystyle \mathbf {a} \cdot \mathbf {n} =1\cdot (-{\frac {2}{3}})+10\cdot {\frac {1}{30}}+75\cdot {\frac {1}{225}}=-{\frac {2}{3}}+{\frac {1}{3}}+{\frac {1}{3}}=0.}
Duota kreivė užrašyta parametrinėmis lygtimis
x
=
ϕ
(
t
)
=
t
2
,
y
=
ψ
(
t
)
=
t
3
,
z
=
ω
(
t
)
=
t
4
.
{\displaystyle x=\phi (t)=t^{2},\quad y=\psi (t)=t^{3},\quad z=\omega (t)=t^{4}.}
Rasti:
a) kreivės liestinės vektorių;
b) normalizuotą kreivės liestinės vektorių (ortą);
c) kreivės normalės vektorių iš normalizuoto liestinės vektoriaus;
d) kampą tarp liestinės orto (vektoriaus) ir normalės vektoriaus, kai parametro t reikšmė lygi 1;
e) normalizuotą liestinės vektorių naudojantis formule
b
=
{
1
;
ψ
′
(
t
)
ϕ
′
(
t
)
;
ω
′
(
t
)
ϕ
′
(
t
)
}
{\displaystyle \mathbf {b} =\{1;{\frac {\psi '(t)}{\phi '(t)}};{\frac {\omega '(t)}{\phi '(t)}}\}}
ir palyginti su normalizuotu liestinės vektoriu
a
=
{
ϕ
′
(
t
)
;
ψ
′
(
t
)
;
ω
′
(
t
)
}
,
{\displaystyle \mathbf {a} =\{\phi '(t);\psi '(t);\omega '(t)\},}
kai
t
=
1
{\displaystyle t=1}
ir kai
t
=
5
{\displaystyle t=5}
;
f) tikrąjį kreivės normalės vektorių naudojantis formule
n
=
{
2
−
3
ϕ
′
(
t
)
;
1
3
ψ
′
(
t
)
;
1
3
ω
′
(
t
)
}
,
{\displaystyle \mathbf {n} =\{{\frac {2}{-3\phi '(t)}};{\frac {1}{3\psi '(t)}};{\frac {1}{3\omega '(t)}}\},}
kai
t
=
1
{\displaystyle t=1}
ir kai
t
=
5
{\displaystyle t=5}
; apskaičiuoti kampą tarp šio normalės vektoriaus ir tarp liestinės vektoriaus, kai
t
=
1
{\displaystyle t=1}
ir kai
t
=
5
{\displaystyle t=5}
;
g) tikrąjį kreivės normalės vektorių naudojantis formule
n
=
{
2
−
3
ϕ
′
(
t
)
ϕ
′
(
t
)
;
1
3
ψ
′
(
t
)
ϕ
′
(
t
)
;
1
3
ω
′
(
t
)
ϕ
′
(
t
)
}
=
{
−
2
3
;
ϕ
′
(
t
)
3
ψ
′
(
t
)
;
ϕ
′
(
t
)
3
ω
′
(
t
)
}
,
{\displaystyle \mathbf {n} =\{{\frac {2}{-3{\phi '(t) \over \phi '(t)}}};{\frac {1}{3{\psi '(t) \over \phi '(t)}}};{\frac {1}{3{\omega '(t) \over \phi '(t)}}}\}=\{-{\frac {2}{3}};{\frac {\phi '(t)}{3\psi '(t)}};{\frac {\phi '(t)}{3\omega '(t)}}\},}
kai
t
=
1
{\displaystyle t=1}
ir kai
t
=
5
{\displaystyle t=5}
; apskaičiuoti kampą tarp šio normalės vektoriaus ir tarp liestinės vektoriaus, kai
t
=
1
{\displaystyle t=1}
ir kai
t
=
5
{\displaystyle t=5}
.
Sprendimas .
a) Kreivės liestinės vektorius yra
a
=
{
(
t
2
)
′
;
(
t
3
)
′
;
(
t
4
)
′
}
=
{
2
t
;
3
t
2
;
4
t
3
}
.
{\displaystyle \mathbf {a} =\{(t^{2})';(t^{3})';(t^{4})'\}=\{2t;3t^{2};4t^{3}\}.}
b) Vektoriaus
a
{\displaystyle \mathbf {a} }
ilgis yra:
‖
a
‖
=
(
2
t
)
2
+
(
3
t
2
)
2
+
(
4
t
3
)
2
=
4
t
2
+
9
t
4
+
16
t
6
.
{\displaystyle \|\mathbf {a} \|={\sqrt {(2t)^{2}+(3t^{2})^{2}+(4t^{3})^{2}}}={\sqrt {4t^{2}+9t^{4}+16t^{6}}}.}
Kreivės liestinės normalizuotas vektorius yra šis:
a
∘
=
a
‖
a
‖
=
{
2
t
4
t
2
+
9
t
4
+
16
t
6
;
3
t
2
4
t
2
+
9
t
4
+
16
t
6
;
4
t
3
4
t
2
+
9
t
4
+
16
t
6
}
;
{\displaystyle \mathbf {a} ^{\circ }={\frac {\mathbf {a} }{\|\mathbf {a} \|}}=\{{\frac {2t}{\sqrt {4t^{2}+9t^{4}+16t^{6}}}};{\frac {3t^{2}}{\sqrt {4t^{2}+9t^{4}+16t^{6}}}};{\frac {4t^{3}}{\sqrt {4t^{2}+9t^{4}+16t^{6}}}}\};}
jo reikšmė, kai
t
=
1
{\displaystyle t=1}
yra
a
∘
|
t
=
1
=
{
2
4
+
9
+
16
;
3
4
+
9
+
16
;
4
4
+
9
+
16
}
,
{\displaystyle \mathbf {a} ^{\circ }|_{t=1}=\{{\frac {2}{\sqrt {4+9+16}}};{\frac {3}{\sqrt {4+9+16}}};{\frac {4}{\sqrt {4+9+16}}}\},}
a
∘
|
t
=
1
=
{
2
29
;
3
29
;
4
29
}
=
{
0.371390676
;
0.557086014
;
0.742781352
}
.
{\displaystyle \mathbf {a} ^{\circ }|_{t=1}=\{{\frac {2}{\sqrt {29}}};{\frac {3}{\sqrt {29}}};{\frac {4}{\sqrt {29}}}\}=\{0.371390676;0.557086014;0.742781352\}.}
c) Kreivės normalės vektorius yra liestinės vektoriaus orto išvestinė:
n
=
(
a
∘
)
′
=
{
(
2
t
4
t
2
+
9
t
4
+
16
t
6
)
′
;
(
3
t
2
4
t
2
+
9
t
4
+
16
t
6
)
′
;
(
4
t
3
4
t
2
+
9
t
4
+
16
t
6
)
′
}
,
{\displaystyle \mathbf {n} =(\mathbf {a} ^{\circ })'=\{({\frac {2t}{\sqrt {4t^{2}+9t^{4}+16t^{6}}}})';({\frac {3t^{2}}{\sqrt {4t^{2}+9t^{4}+16t^{6}}}})';({\frac {4t^{3}}{\sqrt {4t^{2}+9t^{4}+16t^{6}}}})'\},}
n
=
{
(
2
t
)
′
4
t
2
+
9
t
4
+
16
t
6
−
2
t
(
4
t
2
+
9
t
4
+
16
t
6
)
′
(
4
t
2
+
9
t
4
+
16
t
6
)
2
;
(
3
t
2
)
′
4
t
2
+
9
t
4
+
16
t
6
−
3
t
2
(
4
t
2
+
9
t
4
+
16
t
6
)
′
(
4
t
2
+
9
t
4
+
16
t
6
)
2
;
(
4
t
3
)
′
4
t
2
+
9
t
4
+
16
t
6
−
4
t
3
(
4
t
2
+
9
t
4
+
16
t
6
)
′
(
4
t
2
+
9
t
4
+
16
t
6
)
2
}
,
{\displaystyle \mathbf {n} =\{{\frac {(2t)'{\sqrt {4t^{2}+9t^{4}+16t^{6}}}-2t({\sqrt {4t^{2}+9t^{4}+16t^{6}}})'}{({\sqrt {4t^{2}+9t^{4}+16t^{6}}})^{2}}};{\frac {(3t^{2})'{\sqrt {4t^{2}+9t^{4}+16t^{6}}}-3t^{2}({\sqrt {4t^{2}+9t^{4}+16t^{6}}})'}{({\sqrt {4t^{2}+9t^{4}+16t^{6}}})^{2}}};{\frac {(4t^{3})'{\sqrt {4t^{2}+9t^{4}+16t^{6}}}-4t^{3}({\sqrt {4t^{2}+9t^{4}+16t^{6}}})'}{({\sqrt {4t^{2}+9t^{4}+16t^{6}}})^{2}}}\},}
n
=
{
2
4
t
2
+
9
t
4
+
16
t
6
−
2
t
⋅
(
4
t
2
+
9
t
4
+
16
t
6
)
′
2
4
t
2
+
9
t
4
+
16
t
6
4
t
2
+
9
t
4
+
16
t
6
;
6
t
4
t
2
+
9
t
4
+
16
t
6
−
3
t
2
⋅
(
4
t
2
+
9
t
4
+
16
t
6
)
′
2
4
t
2
+
9
t
4
+
16
t
6
4
t
2
+
9
t
4
+
16
t
6
;
12
t
2
4
t
2
+
9
t
4
+
16
t
6
−
4
t
3
⋅
(
4
t
2
+
9
t
4
+
16
t
6
)
′
2
4
t
2
+
9
t
4
+
16
t
6
4
t
2
+
9
t
4
+
16
t
6
}
,
{\displaystyle \mathbf {n} =\{{\frac {2{\sqrt {4t^{2}+9t^{4}+16t^{6}}}-2t\cdot {\frac {(4t^{2}+9t^{4}+16t^{6})'}{2{\sqrt {4t^{2}+9t^{4}+16t^{6}}}}}}{4t^{2}+9t^{4}+16t^{6}}};{\frac {6t{\sqrt {4t^{2}+9t^{4}+16t^{6}}}-3t^{2}\cdot {\frac {(4t^{2}+9t^{4}+16t^{6})'}{2{\sqrt {4t^{2}+9t^{4}+16t^{6}}}}}}{4t^{2}+9t^{4}+16t^{6}}};{\frac {12t^{2}{\sqrt {4t^{2}+9t^{4}+16t^{6}}}-4t^{3}\cdot {\frac {(4t^{2}+9t^{4}+16t^{6})'}{2{\sqrt {4t^{2}+9t^{4}+16t^{6}}}}}}{4t^{2}+9t^{4}+16t^{6}}}\},}
n
=
{
2
4
t
2
+
9
t
4
+
16
t
6
−
2
t
⋅
8
t
+
36
t
3
+
96
t
5
2
4
t
2
+
9
t
4
+
16
t
6
4
t
2
+
9
t
4
+
16
t
6
;
6
t
4
t
2
+
9
t
4
+
16
t
6
−
3
t
2
⋅
8
t
+
36
t
3
+
96
t
5
2
4
t
2
+
9
t
4
+
16
t
6
4
t
2
+
9
t
4
+
16
t
6
;
12
t
2
4
t
2
+
9
t
4
+
16
t
6
−
4
t
3
⋅
8
t
+
36
t
3
+
96
t
5
2
4
t
2
+
9
t
4
+
16
t
6
4
t
2
+
9
t
4
+
16
t
6
}
,
{\displaystyle \mathbf {n} =\{{\frac {2{\sqrt {4t^{2}+9t^{4}+16t^{6}}}-2t\cdot {\frac {8t+36t^{3}+96t^{5}}{2{\sqrt {4t^{2}+9t^{4}+16t^{6}}}}}}{4t^{2}+9t^{4}+16t^{6}}};{\frac {6t{\sqrt {4t^{2}+9t^{4}+16t^{6}}}-3t^{2}\cdot {\frac {8t+36t^{3}+96t^{5}}{2{\sqrt {4t^{2}+9t^{4}+16t^{6}}}}}}{4t^{2}+9t^{4}+16t^{6}}};{\frac {12t^{2}{\sqrt {4t^{2}+9t^{4}+16t^{6}}}-4t^{3}\cdot {\frac {8t+36t^{3}+96t^{5}}{2{\sqrt {4t^{2}+9t^{4}+16t^{6}}}}}}{4t^{2}+9t^{4}+16t^{6}}}\},}
n
=
{
2
4
t
2
+
9
t
4
+
16
t
6
−
2
t
⋅
8
t
+
36
t
3
+
96
t
5
2
(
4
t
2
+
9
t
4
+
16
t
6
)
3
;
6
t
4
t
2
+
9
t
4
+
16
t
6
−
3
t
2
⋅
8
t
+
36
t
3
+
96
t
5
2
(
4
t
2
+
9
t
4
+
16
t
6
)
3
;
12
t
2
4
t
2
+
9
t
4
+
16
t
6
−
4
t
3
⋅
8
t
+
36
t
3
+
96
t
5
2
(
4
t
2
+
9
t
4
+
16
t
6
)
3
}
,
{\displaystyle \mathbf {n} =\{{\frac {2}{\sqrt {4t^{2}+9t^{4}+16t^{6}}}}-2t\cdot {\frac {8t+36t^{3}+96t^{5}}{2{\sqrt {(4t^{2}+9t^{4}+16t^{6})^{3}}}}};{\frac {6t}{\sqrt {4t^{2}+9t^{4}+16t^{6}}}}-3t^{2}\cdot {\frac {8t+36t^{3}+96t^{5}}{2{\sqrt {(4t^{2}+9t^{4}+16t^{6})^{3}}}}};{\frac {12t^{2}}{\sqrt {4t^{2}+9t^{4}+16t^{6}}}}-4t^{3}\cdot {\frac {8t+36t^{3}+96t^{5}}{2{\sqrt {(4t^{2}+9t^{4}+16t^{6})^{3}}}}}\},}
n
=
{
2
4
t
2
+
9
t
4
+
16
t
6
−
2
t
(
4
t
+
18
t
3
+
48
t
5
)
(
4
t
2
+
9
t
4
+
16
t
6
)
3
;
6
t
4
t
2
+
9
t
4
+
16
t
6
−
3
t
2
(
4
t
+
18
t
3
+
48
t
5
)
(
4
t
2
+
9
t
4
+
16
t
6
)
3
;
12
t
2
4
t
2
+
9
t
4
+
16
t
6
−
4
t
3
(
4
t
+
18
t
3
+
48
t
5
)
(
4
t
2
+
9
t
4
+
16
t
6
)
3
}
;
{\displaystyle \mathbf {n} =\{{\frac {2}{\sqrt {4t^{2}+9t^{4}+16t^{6}}}}-{\frac {2t(4t+18t^{3}+48t^{5})}{\sqrt {(4t^{2}+9t^{4}+16t^{6})^{3}}}};{\frac {6t}{\sqrt {4t^{2}+9t^{4}+16t^{6}}}}-{\frac {3t^{2}(4t+18t^{3}+48t^{5})}{\sqrt {(4t^{2}+9t^{4}+16t^{6})^{3}}}};{\frac {12t^{2}}{\sqrt {4t^{2}+9t^{4}+16t^{6}}}}-{\frac {4t^{3}(4t+18t^{3}+48t^{5})}{\sqrt {(4t^{2}+9t^{4}+16t^{6})^{3}}}}\};}
su reikšme
t
=
1
{\displaystyle t=1}
kreivės normalės vektorius statmenas liestienei yra:
n
|
t
=
1
=
{
2
4
+
9
+
16
−
2
(
4
+
18
+
48
)
(
4
+
9
+
16
)
3
;
6
4
+
9
+
16
−
3
(
4
+
18
+
48
)
(
4
+
9
+
16
)
3
;
12
4
+
9
+
16
−
4
(
4
+
18
+
48
)
(
4
+
9
+
16
)
3
}
;
{\displaystyle \mathbf {n} |_{t=1}=\{{\frac {2}{\sqrt {4+9+16}}}-{\frac {2(4+18+48)}{\sqrt {(4+9+16)^{3}}}};{\frac {6}{\sqrt {4+9+16}}}-{\frac {3(4+18+48)}{\sqrt {(4+9+16)^{3}}}};{\frac {12}{\sqrt {4+9+16}}}-{\frac {4(4+18+48)}{\sqrt {(4+9+16)^{3}}}}\};}
n
|
t
=
1
=
{
2
29
−
2
⋅
70
29
3
;
6
29
−
3
⋅
70
29
3
;
12
29
−
4
⋅
70
29
3
}
;
{\displaystyle \mathbf {n} |_{t=1}=\{{\frac {2}{\sqrt {29}}}-{\frac {2\cdot 70}{\sqrt {29^{3}}}};{\frac {6}{\sqrt {29}}}-{\frac {3\cdot 70}{\sqrt {29^{3}}}};{\frac {12}{\sqrt {29}}}-{\frac {4\cdot 70}{\sqrt {29^{3}}}}\};}
n
|
t
=
1
=
{
2
29
−
140
24389
;
6
29
−
210
24389
;
12
29
−
280
24389
}
;
{\displaystyle \mathbf {n} |_{t=1}=\{{\frac {2}{\sqrt {29}}}-{\frac {140}{\sqrt {24389}}};{\frac {6}{\sqrt {29}}}-{\frac {210}{\sqrt {24389}}};{\frac {12}{\sqrt {29}}}-{\frac {280}{\sqrt {24389}}}\};}
n
|
t
=
1
=
{
−
0.525069576
;
−
0.23051835
;
0.435423551
}
;
{\displaystyle \mathbf {n} |_{t=1}=\{-0.525069576;-0.23051835;0.435423551\};}
normalizuotas kreivės normalės vektorius yra šis:
n
∘
|
t
=
1
=
n
|
t
=
1
(
−
0.525069576
)
2
+
(
−
0.23051835
)
2
+
(
0.435423551
)
2
=
n
|
t
=
1
0.518430438
=
n
|
t
=
1
0.720021137
,
{\displaystyle \mathbf {n} ^{\circ }|_{t=1}={\frac {\mathbf {n} |_{t=1}}{\sqrt {(-0.525069576)^{2}+(-0.23051835)^{2}+(0.435423551)^{2}}}}={\frac {\mathbf {n} |_{t=1}}{\sqrt {0.518430438}}}={\frac {\mathbf {n} |_{t=1}}{0.720021137}},}
n
∘
|
t
=
1
=
{
−
0.525069576
0.720021137
;
−
0.23051835
0.720021137
;
0.435423551
0.720021137
}
=
{
−
0.729241891
;
−
0.320154976
;
0.604737178
}
.
{\displaystyle \mathbf {n} ^{\circ }|_{t=1}=\{{\frac {-0.525069576}{0.720021137}};{\frac {-0.23051835}{0.720021137}};{\frac {0.435423551}{0.720021137}}\}=\{-0.729241891;-0.320154976;0.604737178\}.}
d) Kampas
α
{\displaystyle \alpha }
tarp kreivės liestinės normalizuoto vektoriaus ir kreivės normalės vektoriaus yra toks:
cos
α
=
a
∘
|
t
=
1
⋅
n
∘
|
t
=
1
‖
a
∘
|
t
=
1
‖
⋅
‖
n
∘
|
t
=
1
‖
=
{\displaystyle \cos \alpha ={\frac {\mathbf {a} ^{\circ }|_{t=1}\cdot \mathbf {n} ^{\circ }|_{t=1}}{\|\mathbf {a} ^{\circ }|_{t=1}\|\cdot \|\mathbf {n} ^{\circ }|_{t=1}\|}}=}
=
0.371390676
⋅
(
−
0.729241891
)
+
0.557086014
⋅
(
−
0.320154976
)
+
0.742781352
⋅
0.604737178
1
⋅
1
=
{\displaystyle ={\frac {0.371390676\cdot (-0.729241891)+0.557086014\cdot (-0.320154976)+0.742781352\cdot 0.604737178}{{\sqrt {1}}\cdot {\sqrt {1}}}}=}
=
−
0.270833638
−
0.178353859
+
0.449187498
=
−
0.449187497
+
0.449187498
=
0.000000001
=
0
;
{\displaystyle =-0.270833638-0.178353859+0.449187498=-0.449187497+0.449187498=0.000000001=0;}
α
=
arccos
(
0
)
=
π
2
=
1.570796327
{\displaystyle \alpha =\arccos(0)={\frac {\pi }{2}}=1.570796327}
arba 90 laipsnių.
e) Kai
t
=
1
{\displaystyle t=1}
normalizuotas liestinės vektorius yra:
a
∘
|
t
=
1
=
{
2
29
;
3
29
;
4
29
}
=
{
0.371390676
;
0.557086014
;
0.742781352
}
;
{\displaystyle \mathbf {a} ^{\circ }|_{t=1}=\{{\frac {2}{\sqrt {29}}};{\frac {3}{\sqrt {29}}};{\frac {4}{\sqrt {29}}}\}=\{0.371390676;0.557086014;0.742781352\};}
kai
t
=
5
{\displaystyle t=5}
liestinės vektorius yra:
a
|
t
=
5
=
{
2
⋅
5
;
3
⋅
5
2
;
4
⋅
5
3
}
=
{
10
;
75
;
500
}
;
{\displaystyle \mathbf {a} |_{t=5}=\{2\cdot 5;3\cdot 5^{2};4\cdot 5^{3}\}=\{10;75;500\};}
kai
t
=
5
{\displaystyle t=5}
normalizuotas liestinės vektorius yra:
a
∘
|
t
=
5
=
{
10
10
2
+
75
2
+
500
2
;
75
10
2
+
75
2
+
500
2
;
500
10
2
+
75
2
+
500
2
}
,
{\displaystyle \mathbf {a} ^{\circ }|_{t=5}=\{{\frac {10}{\sqrt {10^{2}+75^{2}+500^{2}}}};{\frac {75}{\sqrt {10^{2}+75^{2}+500^{2}}}};{\frac {500}{\sqrt {10^{2}+75^{2}+500^{2}}}}\},}
a
∘
|
t
=
5
=
{
10
100
+
5625
+
250000
;
75
255725
;
500
255725
}
,
{\displaystyle \mathbf {a} ^{\circ }|_{t=5}=\{{\frac {10}{\sqrt {100+5625+250000}}};{\frac {75}{\sqrt {255725}}};{\frac {500}{\sqrt {255725}}}\},}
a
∘
|
t
=
5
=
{
10
505.6925944
;
75
505.6925944
;
500
505.6925944
}
,
{\displaystyle \mathbf {a} ^{\circ }|_{t=5}=\{{\frac {10}{505.6925944}};{\frac {75}{505.6925944}};{\frac {500}{505.6925944}}\},}
a
∘
|
t
=
5
=
{
0.019774859
;
0.148311446
;
0.988742974
}
;
{\displaystyle \mathbf {a} ^{\circ }|_{t=5}=\{0.019774859;0.148311446;0.988742974\};}
b
=
{
1
;
ψ
′
(
t
)
ϕ
′
(
t
)
;
ω
′
(
t
)
ϕ
′
(
t
)
}
=
{
1
;
3
t
2
2
t
;
4
t
3
2
t
}
,
{\displaystyle \mathbf {b} =\{1;{\frac {\psi '(t)}{\phi '(t)}};{\frac {\omega '(t)}{\phi '(t)}}\}=\{1;{\frac {3t^{2}}{2t}};{\frac {4t^{3}}{2t}}\},}
b
=
{
1
;
3
t
2
;
2
t
2
}
;
{\displaystyle \mathbf {b} =\{1;{\frac {3t}{2}};2t^{2}\};}
liestinės vektoriaus b reikšmė, kai
t
=
1
{\displaystyle t=1}
yra:
b
|
t
=
1
=
{
1
;
3
2
;
2
}
;
{\displaystyle \mathbf {b} |_{t=1}=\{1;{\frac {3}{2}};2\};}
normalizuoto liestinės vektoriaus b reikšmė, kai
t
=
1
{\displaystyle t=1}
yra:
b
∘
|
t
=
1
=
{
1
1
2
+
1.5
2
+
2
2
;
1.5
1
2
+
1.5
2
+
2
2
;
2
1
2
+
1.5
2
+
2
2
}
,
{\displaystyle \mathbf {b} ^{\circ }|_{t=1}=\{{\frac {1}{\sqrt {1^{2}+1.5^{2}+2^{2}}}};{\frac {1.5}{\sqrt {1^{2}+1.5^{2}+2^{2}}}};{\frac {2}{\sqrt {1^{2}+1.5^{2}+2^{2}}}}\},}
b
∘
|
t
=
1
=
{
1
1
+
2.25
+
4
;
1.5
7.25
;
2
7.25
}
=
{
1
2.692582404
;
1.5
2.692582404
;
2
2.692582404
}
,
{\displaystyle \mathbf {b} ^{\circ }|_{t=1}=\{{\frac {1}{\sqrt {1+2.25+4}}};{\frac {1.5}{\sqrt {7.25}}};{\frac {2}{\sqrt {7.25}}}\}=\{{\frac {1}{2.692582404}};{\frac {1.5}{2.692582404}};{\frac {2}{2.692582404}}\},}
b
∘
|
t
=
1
=
{
0.371390676
;
0.557086014
;
0.742781352
}
;
{\displaystyle \mathbf {b} ^{\circ }|_{t=1}=\{0.371390676;0.557086014;0.742781352\};}
liestinės vektoriaus b reikšmė, kai
t
=
5
{\displaystyle t=5}
yra:
b
|
t
=
5
=
{
1
;
3
⋅
5
2
;
2
⋅
5
2
}
=
{
1
;
15
2
;
50
}
;
{\displaystyle \mathbf {b} |_{t=5}=\{1;{\frac {3\cdot 5}{2}};2\cdot 5^{2}\}=\{1;{\frac {15}{2}};50\};}
normalizuoto vektoriaus b reikšmė, kai
t
=
5
{\displaystyle t=5}
yra tokia pati kaip normalizuoto a vektoriaus:
b
∘
|
t
=
5
=
{
1
1
2
+
7.5
2
+
50
2
;
15
2
1
+
56.25
+
2500
;
50
2557.25
}
;
{\displaystyle \mathbf {b} ^{\circ }|_{t=5}=\{{\frac {1}{\sqrt {1^{2}+7.5^{2}+50^{2}}}};{\frac {\frac {15}{2}}{\sqrt {1+56.25+2500}}};{\frac {50}{\sqrt {2557.25}}}\};}
b
∘
|
t
=
5
=
{
1
50.56925944
;
7.5
50.56925944
;
50
50.56925944
}
;
{\displaystyle \mathbf {b} ^{\circ }|_{t=5}=\{{\frac {1}{50.56925944}};{\frac {7.5}{50.56925944}};{\frac {50}{50.56925944}}\};}
b
∘
|
t
=
5
=
{
0.019774859
;
0.148311446
;
0.988742974
}
;
{\displaystyle \mathbf {b} ^{\circ }|_{t=5}=\{0.019774859;0.148311446;0.988742974\};}
f) 'Tikrasis' kreivės normalės vektorius yra:
m
=
{
2
−
3
ϕ
′
(
t
)
;
1
3
ψ
′
(
t
)
;
1
3
ω
′
(
t
)
}
=
{
2
−
3
⋅
2
t
;
1
3
⋅
3
t
2
;
1
3
⋅
4
t
3
}
,
{\displaystyle \mathbf {m} =\{{\frac {2}{-3\phi '(t)}};{\frac {1}{3\psi '(t)}};{\frac {1}{3\omega '(t)}}\}=\{{\frac {2}{-3\cdot 2t}};{\frac {1}{3\cdot 3t^{2}}};{\frac {1}{3\cdot 4t^{3}}}\},}
m
=
{
−
1
3
t
;
1
9
t
2
;
1
12
t
3
}
;
{\displaystyle \mathbf {m} =\{-{\frac {1}{3t}};{\frac {1}{9t^{2}}};{\frac {1}{12t^{3}}}\};}
'tikrasis' kreivės normalės vektorius, kai
t
=
1
{\displaystyle t=1}
yra:
m
|
t
=
1
=
{
−
1
3
;
1
9
;
1
12
}
;
{\displaystyle \mathbf {m} |_{t=1}=\{-{\frac {1}{3}};{\frac {1}{9}};{\frac {1}{12}}\};}
normalizuotas 'tikrasis' kreivės normalės vektorius, kai
t
=
1
{\displaystyle t=1}
yra:
m
∘
|
t
=
1
=
{
−
1
3
(
−
1
3
)
2
+
(
1
9
)
2
+
(
1
12
)
2
;
1
9
(
−
1
3
)
2
+
(
1
9
)
2
+
(
1
12
)
2
;
1
12
(
−
1
3
)
2
+
(
1
9
)
2
+
(
1
12
)
2
}
,
{\displaystyle \mathbf {m} ^{\circ }|_{t=1}=\{-{\frac {\frac {1}{3}}{\sqrt {(-{\frac {1}{3}})^{2}+({\frac {1}{9}})^{2}+({\frac {1}{12}})^{2}}}};{\frac {\frac {1}{9}}{\sqrt {(-{\frac {1}{3}})^{2}+({\frac {1}{9}})^{2}+({\frac {1}{12}})^{2}}}};{\frac {\frac {1}{12}}{\sqrt {(-{\frac {1}{3}})^{2}+({\frac {1}{9}})^{2}+({\frac {1}{12}})^{2}}}}\},}
m
∘
|
t
=
1
=
{
−
1
3
1
9
+
1
81
+
1
144
;
1
9
1296
+
144
+
81
81
⋅
144
;
1
12
1521
11664
}
,
{\displaystyle \mathbf {m} ^{\circ }|_{t=1}=\{-{\frac {\frac {1}{3}}{\sqrt {{\frac {1}{9}}+{\frac {1}{81}}+{\frac {1}{144}}}}};{\frac {\frac {1}{9}}{\sqrt {\frac {1296+144+81}{81\cdot 144}}}};{\frac {\frac {1}{12}}{\sqrt {\frac {1521}{11664}}}}\},}
m
∘
|
t
=
1
=
{
−
1
3
0.130401234
;
1
9
0.130401234
;
1
12
0.130401234
}
=
{
−
1
3
0.361111111
;
1
9
0.361111111
;
1
12
0.361111111
}
,
{\displaystyle \mathbf {m} ^{\circ }|_{t=1}=\{-{\frac {\frac {1}{3}}{\sqrt {0.130401234}}};{\frac {\frac {1}{9}}{\sqrt {0.130401234}}};{\frac {\frac {1}{12}}{\sqrt {0.130401234}}}\}=\{-{\frac {\frac {1}{3}}{0.361111111}};{\frac {\frac {1}{9}}{0.361111111}};{\frac {\frac {1}{12}}{0.361111111}}\},}
m
∘
|
t
=
1
=
{
−
0.923076923
;
0.307692307
;
0.23076923
}
;
{\displaystyle \mathbf {m} ^{\circ }|_{t=1}=\{-0.923076923;0.307692307;0.23076923\};}
'tikrasis' kreivės normalės vektorius, kai
t
=
5
{\displaystyle t=5}
yra:
m
|
t
=
5
=
{
−
1
3
⋅
5
;
1
9
⋅
5
2
;
1
12
⋅
5
3
}
=
{
−
1
15
;
1
9
⋅
25
;
1
12
⋅
125
}
,
{\displaystyle \mathbf {m} |_{t=5}=\{-{\frac {1}{3\cdot 5}};{\frac {1}{9\cdot 5^{2}}};{\frac {1}{12\cdot 5^{3}}}\}=\{-{\frac {1}{15}};{\frac {1}{9\cdot 25}};{\frac {1}{12\cdot 125}}\},}
m
|
t
=
5
=
{
−
1
15
;
1
225
;
1
1500
}
;
{\displaystyle \mathbf {m} |_{t=5}=\{-{\frac {1}{15}};{\frac {1}{225}};{\frac {1}{1500}}\};}
normalizuotas 'tikrasis' kreivės normalės vektorius, kai
t
=
5
{\displaystyle t=5}
yra:
m
∘
|
t
=
5
=
{
−
1
15
(
−
1
15
)
2
+
(
1
225
)
2
+
(
1
1500
)
2
;
1
225
0.004464641
;
1
500
0.066817976
}
,
{\displaystyle \mathbf {m} ^{\circ }|_{t=5}=\{{\frac {-{\frac {1}{15}}}{\sqrt {(-{\frac {1}{15}})^{2}+({\frac {1}{225}})^{2}+({\frac {1}{1500}})^{2}}}};{\frac {\frac {1}{225}}{\sqrt {0.004464641}}};{\frac {\frac {1}{500}}{0.066817976}}\},}
m
∘
|
t
=
5
=
{
−
0.99735493
;
0.066515699
;
0.009977354
}
;
{\displaystyle \mathbf {m} ^{\circ }|_{t=5}=\{-0.99735493;0.066515699;0.009977354\};}
kampas tarp liestinės vektoriaus a ir 'tikrojo' normalės vektoriaus m yra lygus 90 laipsnių, nes jų skaliarinė sandauga lygi nuliui:
a
|
t
=
1
⋅
m
|
t
=
1
=
2
⋅
(
−
1
3
)
+
3
⋅
1
9
+
4
⋅
1
12
=
−
2
3
+
1
3
+
1
3
=
0
;
{\displaystyle \mathbf {a} |_{t=1}\cdot \mathbf {m} |_{t=1}=2\cdot (-{\frac {1}{3}})+3\cdot {\frac {1}{9}}+4\cdot {\frac {1}{12}}=-{\frac {2}{3}}+{\frac {1}{3}}+{\frac {1}{3}}=0;}
liestinės vektorius, kai
t
=
5
{\displaystyle t=5}
yra:
a
|
t
=
5
=
{
2
⋅
5
;
3
⋅
5
2
;
4
⋅
5
3
}
=
{
10
;
75
;
500
}
;
{\displaystyle \mathbf {a} |_{t=5}=\{2\cdot 5;3\cdot 5^{2};4\cdot 5^{3}\}=\{10;75;500\};}
kampas tarp liestinės vektoriaus ir 'tikrojo' normalės vektoriaus m yra 90 laipsnių, nes šių vektorių skaliarinė sandauga lygi nuliui:
a
|
t
=
5
⋅
m
|
t
=
5
=
10
⋅
(
−
1
15
)
+
75
⋅
1
225
+
500
⋅
1
1500
=
−
2
3
+
1
3
+
1
3
=
0.
{\displaystyle \mathbf {a} |_{t=5}\cdot \mathbf {m} |_{t=5}=10\cdot (-{\frac {1}{15}})+75\cdot {\frac {1}{225}}+500\cdot {\frac {1}{1500}}=-{\frac {2}{3}}+{\frac {1}{3}}+{\frac {1}{3}}=0.}
g) 'Tikrasis' kreivės normalės vektorius yra:
m
=
{
−
2
3
;
ϕ
′
(
t
)
3
ψ
′
(
t
)
;
ϕ
′
(
t
)
3
ω
′
(
t
)
}
=
{
−
2
3
;
2
t
3
⋅
3
t
2
;
2
t
3
⋅
4
t
3
}
,
{\displaystyle \mathbf {m} =\{-{\frac {2}{3}};{\frac {\phi '(t)}{3\psi '(t)}};{\frac {\phi '(t)}{3\omega '(t)}}\}=\{-{\frac {2}{3}};{\frac {2t}{3\cdot 3t^{2}}};{\frac {2t}{3\cdot 4t^{3}}}\},}
m
=
{
−
2
3
;
2
t
9
t
2
;
2
t
12
t
3
}
=
{
−
2
3
;
2
t
9
t
2
;
t
6
t
3
}
;
{\displaystyle \mathbf {m} =\{-{\frac {2}{3}};{\frac {2t}{9t^{2}}};{\frac {2t}{12t^{3}}}\}=\{-{\frac {2}{3}};{\frac {2t}{9t^{2}}};{\frac {t}{6t^{3}}}\};}
'tikrasis' kreivės normalės vektorius, kai
t
=
1
{\displaystyle t=1}
yra:
m
|
t
=
1
=
{
−
2
3
;
2
9
;
1
6
}
;
{\displaystyle \mathbf {m} |_{t=1}=\{-{\frac {2}{3}};{\frac {2}{9}};{\frac {1}{6}}\};}
'tikrasis' kreivės normalės vektorius, kai
t
=
5
{\displaystyle t=5}
yra:
m
|
t
=
5
=
{
−
2
3
;
2
⋅
5
9
⋅
5
2
;
5
6
⋅
5
3
}
=
{
−
2
3
;
2
45
;
1
150
}
;
{\displaystyle \mathbf {m} |_{t=5}=\{-{\frac {2}{3}};{\frac {2\cdot 5}{9\cdot 5^{2}}};{\frac {5}{6\cdot 5^{3}}}\}=\{-{\frac {2}{3}};{\frac {2}{45}};{\frac {1}{150}}\};}
kampas tarp liestinės vektoriaus a ir 'tikrojo' normalės vektoriaus m yra lygus 90 laipsnių, nes jų skaliarinė sandauga lygi nuliui:
a
|
t
=
1
⋅
m
|
t
=
1
=
2
⋅
(
−
2
3
)
+
3
⋅
2
9
+
4
⋅
1
6
=
−
4
3
+
2
3
+
2
3
=
0
;
{\displaystyle \mathbf {a} |_{t=1}\cdot \mathbf {m} |_{t=1}=2\cdot (-{\frac {2}{3}})+3\cdot {\frac {2}{9}}+4\cdot {\frac {1}{6}}=-{\frac {4}{3}}+{\frac {2}{3}}+{\frac {2}{3}}=0;}
a
|
t
=
5
⋅
m
|
t
=
5
=
10
⋅
(
−
2
3
)
+
75
⋅
2
45
+
500
⋅
1
150
=
−
20
3
+
10
3
+
10
3
=
0.
{\displaystyle \mathbf {a} |_{t=5}\cdot \mathbf {m} |_{t=5}=10\cdot (-{\frac {2}{3}})+75\cdot {\frac {2}{45}}+500\cdot {\frac {1}{150}}=-{\frac {20}{3}}+{\frac {10}{3}}+{\frac {10}{3}}=0.}
Update 1. Alternatyvus liestinei statmenas vektorius gautas pagal formulę
n
=
{
2
−
3
ϕ
′
(
t
)
;
1
3
ψ
′
(
t
)
;
1
3
ω
′
(
t
)
}
{\displaystyle \mathbf {n} =\{{\frac {2}{-3\phi '(t)}};{\frac {1}{3\psi '(t)}};{\frac {1}{3\omega '(t)}}\}}
yra paprastas triukas. Kadangi liestinės vektorius yra
a
=
{
ϕ
′
(
t
)
;
ψ
′
(
t
)
;
ω
′
(
t
)
}
,
{\displaystyle \mathbf {a} =\{\phi '(t);\psi '(t);\omega '(t)\},}
tai aišku, kad vektorių n ir a skaliarinė sandauga bus lygi nuliui. Todėl normalės vektorius gali būti ir
n
=
{
1
ϕ
′
(
t
)
;
−
2
ψ
′
(
t
)
;
1
ω
′
(
t
)
}
{\displaystyle \mathbf {n} =\{{\frac {1}{\phi '(t)}};{\frac {-2}{\psi '(t)}};{\frac {1}{\omega '(t)}}\}}
ir
n
=
{
1
ϕ
′
(
t
)
;
1
ψ
′
(
t
)
;
−
2
ω
′
(
t
)
}
.
{\displaystyle \mathbf {n} =\{{\frac {1}{\phi '(t)}};{\frac {1}{\psi '(t)}};{\frac {-2}{\omega '(t)}}\}.}
Taip pat erdvinės kreivės (užrašytos parametriškai) liestinės vektoriui a statmenas vektorius bus ir pavyzdžiui vektorius
m
=
{
−
2
ϕ
′
(
t
)
;
1.5
ψ
′
(
t
)
;
0.5
ω
′
(
t
)
}
,
{\displaystyle \mathbf {m} =\{{\frac {-2}{\phi '(t)}};{\frac {1.5}{\psi '(t)}};{\frac {0.5}{\omega '(t)}}\},}
nes jų skaliarinė sandauga lygi nuliui:
a
⋅
m
=
ϕ
′
(
t
)
⋅
−
2
ϕ
′
(
t
)
+
ψ
′
(
t
)
⋅
1.5
ψ
′
(
t
)
+
ω
′
(
t
)
⋅
0.5
ω
′
(
t
)
=
−
2
+
1.5
+
0.5
=
0.
{\displaystyle \mathbf {a} \cdot \mathbf {m} =\phi '(t)\cdot {\frac {-2}{\phi '(t)}}+\psi '(t)\cdot {\frac {1.5}{\psi '(t)}}+\omega '(t)\cdot {\frac {0.5}{\omega '(t)}}=-2+1.5+0.5=0.}
Tokiu budu erdvinės kreivės liestinės vektoriui
a
=
{
ϕ
′
(
t
)
;
ψ
′
(
t
)
;
ω
′
(
t
)
}
{\displaystyle \mathbf {a} =\{\phi '(t);\psi '(t);\omega '(t)\}}
galima sudaryti begalo daug statmenų normalės vektorių n (kurių ortai skiriasi - normalės vektoriai neguli ant tos pačios tiesės).
Kampo tarp vektorių radimas su sinusu
keisti
‖
a
×
b
‖
=
‖
a
‖
‖
b
‖
sin
(
θ
)
,
{\displaystyle \left\|\mathbf {a} \times \mathbf {b} \right\|=\left\|\mathbf {a} \right\|\left\|\mathbf {b} \right\|\sin(\theta ),}
sin
θ
=
‖
a
×
b
‖
‖
a
‖
‖
b
‖
,
{\displaystyle \sin \theta ={\frac {\|\mathbf {a} \times \mathbf {b} \|}{\|\mathbf {a} \|\|\mathbf {b} \|}},}
kur
θ
{\displaystyle \theta }
yra kampas tarp vektorių a ir b .
Pavyzdžiui, duoti vektoriai a =(1; -2; 0), b =(3; 0; 0).
‖
a
‖
=
1
2
+
(
−
2
)
2
+
0
2
=
5
≈
2.236067978.
{\displaystyle \left\|\mathbf {a} \right\|={\sqrt {1^{2}+(-2)^{2}+0^{2}}}={\sqrt {5}}\approx 2.236067978.}
‖
b
‖
=
3
2
+
0
2
+
0
2
=
9
=
3.
{\displaystyle \left\|\mathbf {b} \right\|={\sqrt {3^{2}+0^{2}+0^{2}}}={\sqrt {9}}=3.}
a
×
b
=
|
i
j
k
1
−
2
0
3
0
0
|
=
{\displaystyle \mathbf {a} \times \mathbf {b} ={\begin{vmatrix}i&j&k\\1&-2&0\\3&0&0\end{vmatrix}}=}
=
i
⋅
(
−
2
)
⋅
0
+
j
⋅
0
⋅
3
+
k
⋅
1
⋅
0
−
i
⋅
0
⋅
0
−
j
⋅
1
⋅
0
−
k
⋅
(
−
2
)
⋅
3
=
0
i
+
0
j
+
6
k
=
(
0
;
0
;
6
)
.
{\displaystyle =i\cdot (-2)\cdot 0+j\cdot 0\cdot 3+k\cdot 1\cdot 0-i\cdot 0\cdot 0-j\cdot 1\cdot 0-k\cdot (-2)\cdot 3=0i+0j+6k=(0;0;6).}
‖
a
×
b
‖
=
0
2
+
0
2
+
6
2
=
36
=
6.
{\displaystyle \|\mathbf {a} \times \mathbf {b} \|={\sqrt {0^{2}+0^{2}+6^{2}}}={\sqrt {36}}=6.}
sin
θ
=
‖
a
×
b
‖
‖
a
‖
‖
b
‖
=
6
5
⋅
3
=
2
5
=
0.894427191
;
{\displaystyle \sin \theta ={\frac {\|\mathbf {a} \times \mathbf {b} \|}{\|\mathbf {a} \|\|\mathbf {b} \|}}={\frac {6}{{\sqrt {5}}\cdot 3}}={\frac {2}{\sqrt {5}}}=0.894427191;}
θ
=
arcsin
2
5
=
arcsin
0.894427191
=
1.107148718
{\displaystyle \theta =\arcsin {\frac {2}{\sqrt {5}}}=\arcsin 0.894427191=1.107148718}
radiano arba 63.43494882 laipsnio.
Pasitikriname:
cos
θ
=
a
⋅
b
‖
a
‖
⋅
‖
b
‖
=
1
⋅
3
+
(
−
2
)
⋅
0
+
0
⋅
0
1
2
+
(
−
2
)
2
+
0
2
⋅
3
2
+
0
2
+
0
2
=
3
1
+
4
+
0
⋅
9
+
0
+
0
=
{\displaystyle \cos \theta ={\frac {\mathbf {a} \cdot \mathbf {b} }{\|\mathbf {a} \|\cdot \|\mathbf {b} \|}}={\frac {1\cdot 3+(-2)\cdot 0+0\cdot 0}{{\sqrt {1^{2}+(-2)^{2}+0^{2}}}\cdot {\sqrt {3^{2}+0^{2}+0^{2}}}}}={\frac {3}{{\sqrt {1+4+0}}\cdot {\sqrt {9+0+0}}}}=}
=
3
5
⋅
3
=
1
5
=
0.447213595.
{\displaystyle ={\frac {3}{{\sqrt {5}}\cdot 3}}={\frac {1}{\sqrt {5}}}=0.447213595.}
θ
=
arccos
1
5
=
arccos
0.447213595
=
1.107148718
{\displaystyle \theta =\arccos {\frac {1}{\sqrt {5}}}=\arccos 0.447213595=1.107148718}
radiano arba 63,43494882 laipsnių.
Taikydami kosinusų toeremą patikrinsime ar kampas
θ
{\displaystyle \theta }
surastas teisingai. Atkarpos t ilgis iš taško a=(1; -2; 0) iki taško b=(3; 0; 0) yra lygus
t
=
(
1
−
3
)
2
+
(
−
2
−
0
)
2
+
(
0
−
0
)
2
=
4
+
4
+
0
=
8
=
2
2
=
2.828427125.
{\displaystyle t={\sqrt {(1-3)^{2}+(-2-0)^{2}+(0-0)^{2}}}={\sqrt {4+4+0}}={\sqrt {8}}=2{\sqrt {2}}=2.828427125.}
Iš kosinusų teoremos žinome, kad
t
2
=
‖
a
‖
2
+
‖
b
‖
2
−
2
‖
a
‖
⋅
‖
b
‖
cos
θ
{\displaystyle t^{2}\ =\|\mathbf {a} \|^{2}+\|\mathbf {b} \|^{2}-2\|\mathbf {a} \|\cdot \|\mathbf {b} \|\cos \theta }
;
cos
θ
=
t
2
−
‖
a
‖
2
−
‖
b
‖
2
−
2
‖
a
‖
‖
b
‖
=
(
8
)
2
−
(
5
)
2
−
3
2
−
2
⋅
5
⋅
3
=
8
−
5
−
9
−
6
5
=
−
6
−
6
5
=
1
5
.
{\displaystyle \cos \theta ={t^{2}-\|\mathbf {a} \|^{2}-\|\mathbf {b} \|^{2} \over -2\|\mathbf {a} \|\|\mathbf {b} \|}={({\sqrt {8}})^{2}-({\sqrt {5}})^{2}-3^{2} \over -2\cdot {\sqrt {5}}\cdot 3}={8-5-9 \over -6{\sqrt {5}}}={-6 \over -6{\sqrt {5}}}={1 \over {\sqrt {5}}}.}
Pavyzdžiui, duoti vektoriai a=(1; -2; 2), b=(3; 0; -4). Jų vektorinė sandauga lygi
a
×
b
=
|
i
j
k
1
−
2
2
3
0
−
4
|
=
|
−
2
2
0
−
4
|
i
−
|
1
2
3
−
4
|
j
+
|
1
−
2
3
0
|
k
=
8
i
+
10
j
+
6
k
=
(
8
;
10
;
6
)
.
{\displaystyle a\times b={\begin{vmatrix}i&j&k\\1&-2&2\\3&0&-4\end{vmatrix}}={\begin{vmatrix}-2&2\\0&-4\end{vmatrix}}i-{\begin{vmatrix}1&2\\3&-4\end{vmatrix}}j+{\begin{vmatrix}1&-2\\3&0\end{vmatrix}}k=8i+10j+6k=(8;10;6).}
Čia skaičiuodami vektorinę sandaugą panaudojome determinantą .
Vektorinės sandaugos modulis yra lygiagretainio plotas, kurį sudaro du vektoriai:
S
=
|
|
a
×
b
|
|
=
8
2
+
10
2
+
6
2
=
200
=
10
2
.
{\displaystyle S=||a\times b||={\sqrt {8^{2}+10^{2}+6^{2}}}={\sqrt {200}}=10{\sqrt {2}}.}
Trikampio plotas yra
S
Δ
=
1
2
|
|
a
×
b
|
|
=
5
2
.
{\displaystyle S_{\Delta }={\frac {1}{2}}||a\times b||=5{\sqrt {2}}.}
Kampo tarp vektorių sinusas yra
sin
ϕ
=
|
|
a
×
b
|
|
|
|
a
|
|
⋅
|
|
b
|
|
=
10
2
3
⋅
5
=
2
2
3