Vektorius – matematinis dydis, apibūdinamas reikšme ir kryptimi erdvėje. Grafiškai vektoriai vaizduojami tiesių atkarpomis su rodyklėmis.
Bendriausias vektoriaus pavyzdys fizikoje būtų jėga .
Skaitinių dydžių grupė abibūdinanti pasirinktą objektą gali būti užrašyta sugrupuotų skaičių sąrašu arba kitaip -- vektoriumi:
v
=
(
v
1
,
v
2
,
.
.
.
,
v
n
)
{\displaystyle v=(v_{1},v_{2},...,v_{n})}
.
kur v yra d skaičių vektorius. Išraiškos su vektoriais yra naudojamos siekiant kompaktiškai užrašyti bei patogiai manipuliuoti ilgomis skaičių grupėmis. Kitas vektorinio užrašymo privalumas yra jo geometrinė interpretacija -- kiekvieną v galima įsivaizduoti kaip vektorių jungiantį n -matės erdvės koordinačių pradžią su tašku, kurio koordinatės nustatytos nariais sudarančiais v .
Vektoriaus daugyba iš skaliaro
keisti
Vienas realaus dydžio skaičius yra vadinamas skaliaru . Vektoriaus daugyba iš skaliaro yra kiekvieno vektoriaus nario daugyba iš skaliaro ir gauta sandauga yra vektorius:
c
v
=
(
c
v
1
,
c
v
2
,
.
.
.
,
c
v
n
)
{\displaystyle cv=(cv_{1},cv_{2},...,cv_{n})}
.
Du vektoriai sudedami sudedant kiekvieno iš jų atitinkamus narius:
v
+
w
=
(
v
1
+
w
1
,
v
2
+
w
2
,
.
.
.
,
v
n
+
w
n
)
{\displaystyle v+w=(v_{1}+w_{1},v_{2}+w_{2},...,v_{n}+w_{n})}
.
Atkreipkite dėmesį, jog vektorinė sudėtis yra komutatyvi , t. y., v+w=w+v.
Skaliarinė vektorių sandauga
keisti
Išsamesnis straipsnis: Skaliarinė sandauga .
Skaliarinės sandaugos savoka yra glaudžiai susijusi su vektoriaus ilgio bei vektoriaus projekcijos sampratomis.
Norint vektorius sudauginti skaliariškai, abu vektoriai turi atitikti , t. y., abiejų vektorių narių skaičius turi būti vienodas. Skaliarinė dviejų vektorių sandauga yra suma visų kiekvieno iš vektoriaus atitinkamų narių sandaugų:
v
⋅
w
=
∑
i
=
1
n
v
i
⋅
w
i
=
v
1
w
1
+
v
2
w
2
+
v
3
w
3
+
.
.
.
+
v
n
w
n
.
{\displaystyle v\cdot w=\sum _{i=1}^{n}v_{i}\cdot w_{i}=v_{1}w_{1}+v_{2}w_{2}+v_{3}w_{3}+...+v_{n}w_{n}.}
Skaliarinės vektorių sandaugos rezultatas yra ne vektorius, o skaliaras.
Pavyzdžiui, yra vektoriai a(3; 5; 6) ir b(4; 0; 1), tai jų skaliarinė sandauga bus lygi:
a
⋅
b
=
3
⋅
4
+
5
⋅
0
+
6
⋅
1
=
12
+
0
+
6
=
18.
{\displaystyle a\cdot b=3\cdot 4+5\cdot 0+6\cdot 1=12+0+6=18.}
Išnagrinėkime atvejį, kai atliekama vektoriaus skaliarinė sandauga su juo pačiu. Plokštumos (2 -matės erdvės) bei įprastos koordinačių sistemos atveju turėsime:
v
⋅
v
=
(
v
1
)
2
+
(
v
2
)
2
{\displaystyle v\cdot v=(v_{1})^{2}+(v_{2})^{2}}
.
Prisiminus Pitagoro teoremą , teigiančią, jog stataus trikampio įstrižainės ilgio kvadratas yra lygus trikampio kraštinių ilgių kvadratų sumai, tampa natūralus toks vektoriaus ilgio apibūdinimas:
|
|
v
|
|
=
v
⋅
v
{\displaystyle ||v||={\sqrt {v\cdot v}}}
.
Atkreipkite dėmesį, jog jei nors vienas iš vektoriaus narių bus didesnis nei kiti, tai jo pakėlimas kvadratu lems viso vektoriaus ilgį.
Pavyzdžiui, vektoriaus a(3; -2; 4) ilgis (tai yra ilgis nuo taško (0; 0; 0) iki taško (3; -2; 4)):
|
|
a
|
|
=
a
x
2
+
a
y
2
+
a
z
2
=
3
2
+
(
−
2
)
2
+
4
2
=
9
+
4
+
16
=
29
≈
5.385.
{\displaystyle ||a||={\sqrt {a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}}={\sqrt {3^{2}+(-2)^{2}+4^{2}}}={\sqrt {9+4+16}}={\sqrt {29}}\approx 5.385.}
Pavyzdžiui, žinomos vektoriaus pradžios A(3; 2; -4) ir galo B(6; -5; -2) koordinatės. Tada vektoriaus ilgis bus
A
B
=
(
x
2
−
x
1
)
2
+
(
y
2
−
y
1
)
2
+
(
z
2
−
z
1
)
2
=
(
6
−
3
)
2
+
(
−
5
−
2
)
2
+
(
−
2
−
4
)
2
=
{\displaystyle AB={\sqrt {(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}+(z_{2}-z_{1})^{2}}}={\sqrt {(6-3)^{2}+(-5-2)^{2}+(-2-4)^{2}}}=}
=
9
+
49
+
4
=
62
≈
7.874.
{\displaystyle ={\sqrt {9+49+4}}={\sqrt {62}}\approx 7.874.}
Jeigu vektoriaus pradžios koordinatės A(0; 0; 0), o galo koordinatės B(6; -5; -2), tai vektoriaus AB ilgis bus:
A
B
=
(
6
−
0
)
2
+
(
−
5
−
0
)
2
+
(
−
2
−
0
)
2
=
36
+
25
+
4
=
65
≈
8.062.
{\displaystyle AB={\sqrt {(6-0)^{2}+(-5-0)^{2}+(-2-0)^{2}}}={\sqrt {36+25+4}}={\sqrt {65}}\approx 8.062.}
Vektoriaus sandaugos su skaliaru duos:
||cv ||=c ||v ||.
Pavyzdžiui, vektorius a(3; -2; 4) ir skaliaras c=5. Tada ca =(15; -10; 20).
c
|
|
a
|
|
=
c
a
x
2
+
a
y
2
+
a
z
2
=
5
3
2
+
(
−
2
)
2
+
4
2
=
5
9
+
4
+
16
=
5
29
.
{\displaystyle c||a||=c{\sqrt {a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}}=5{\sqrt {3^{2}+(-2)^{2}+4^{2}}}=5{\sqrt {9+4+16}}=5{\sqrt {29}}.}
|
|
c
a
|
|
=
a
x
2
+
a
y
2
+
a
z
2
=
15
2
+
(
−
10
)
2
+
20
2
=
225
+
100
+
400
=
725
=
5
29
.
{\displaystyle ||ca||={\sqrt {a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}}={\sqrt {15^{2}+(-10)^{2}+20^{2}}}={\sqrt {225+100+400}}={\sqrt {725}}=5{\sqrt {29}}.}
Trikampio nelygybė naudojama apibūdinti dviejų vektorių sumos ilgį:
||v +w ||<=||v ||+||w ||.
Pavyzdžiui, yra vektoriai v=(3; -2; 4) ir w=(1; 5; 8). z =v +w =(3+1; -2+5; 4+8)=(4; 3; 12).
|
|
z
|
|
=
4
2
+
3
2
+
12
2
=
16
+
9
+
144
=
169
=
13.
{\displaystyle ||z||={\sqrt {4^{2}+3^{2}+12^{2}}}={\sqrt {16+9+144}}={\sqrt {169}}=13.}
|
|
v
|
|
=
3
2
+
(
−
2
)
2
+
4
2
=
29
≈
5.385164807.
{\displaystyle ||v||={\sqrt {3^{2}+(-2)^{2}+4^{2}}}={\sqrt {29}}\approx 5.385164807.}
|
|
w
|
|
=
1
2
+
5
2
+
8
2
=
1
+
25
+
64
=
90
=
3
10
≈
9.486832981.
{\displaystyle ||w||={\sqrt {1^{2}+5^{2}+8^{2}}}={\sqrt {1+25+64}}={\sqrt {90}}=3{\sqrt {10}}\approx 9.486832981.}
||v||+||w||=5.385164807+9.486832981=14.87199779.
|
|
z
|
|
=
|
|
v
+
w
|
|
=
13
≤
14.87199779
=
|
|
v
|
|
+
|
|
w
|
|
.
{\displaystyle ||z||=||v+w||=13\leq 14.87199779=||v||+||w||.}
Atstumas tarp vieno vektoriaus galo ir kito vektoriaus galo (atstumas tarp dviejų taškų n-matėje koordinačių sistemoje ) matuojamas pagal formulę:
‖
v
−
w
‖
=
∑
i
=
1
n
(
v
i
−
w
i
)
2
=
(
v
1
−
w
1
)
2
+
(
v
2
−
w
2
)
2
+
.
.
.
+
(
v
n
−
w
n
)
2
.
{\displaystyle \|v-w\|={\sqrt {\sum _{i=1}^{n}(v_{i}-w_{i})^{2}}}={\sqrt {(v_{1}-w_{1})^{2}+(v_{2}-w_{2})^{2}+...+(v_{n}-w_{n})^{2}}}.}
Pavyzdžiai
Turime vektorius v=[3, 6], w=[7, 4]. Atstumas tarp jų galų:
(
3
−
7
)
2
+
(
6
−
4
)
2
=
20
≈
4
,
47.
{\displaystyle {\sqrt {(3-7)^{2}+(6-4)^{2}}}={\sqrt {20}}\approx 4,47.}
Rasime trikampio, esančio trimatėje erdvėje, plotą. Trikampio viršunių koordinates (x; y; z) yra tokios: A(8; 3; -3); B(3; 2; -1); C(4; 0; -3). Dabar reikia surasti tiesių ilgius AB, AC ir BC:
a
=
A
B
=
(
8
−
3
)
2
+
(
3
−
2
)
2
+
(
−
3
−
(
−
1
)
)
2
=
30
,
{\displaystyle a=AB={\sqrt {(8-3)^{2}+(3-2)^{2}+(-3-(-1))^{2}}}={\sqrt {30}},}
b
=
A
C
=
(
8
−
4
)
2
+
(
3
−
0
)
2
+
(
−
3
−
(
−
3
)
)
2
=
5
,
{\displaystyle b=AC={\sqrt {(8-4)^{2}+(3-0)^{2}+(-3-(-3))^{2}}}=5,}
c
=
B
C
=
(
3
−
4
)
2
+
(
2
−
0
)
2
+
(
−
1
−
(
−
3
)
)
2
=
3.
{\displaystyle c=BC={\sqrt {(3-4)^{2}+(2-0)^{2}+(-1-(-3))^{2}}}=3.}
Taikydami Herono formule apskaičiuojame trikampio pusperimetrį p :
p
=
a
+
b
+
c
2
=
30
+
5
+
3
2
≈
13.477.
{\displaystyle p={\frac {a+b+c}{2}}={\frac {{\sqrt {30}}+5+3}{2}}\approx 13.477.}
Ir trikampio plotą S :
S
=
p
(
p
−
a
)
(
p
−
b
)
(
p
−
c
)
≈
13.477
(
13.477
−
5.477
)
(
13.477
−
5
)
(
13.477
−
3
)
≈
97.855
{\displaystyle S={\sqrt {p(p-a)(p-b)(p-c)}}\approx {\sqrt {13.477(13.477-5.477)(13.477-5)(13.477-3)}}\approx 97.855}
Rasime trikampio plotą, kurio višunės yra taškuose A(1; 3; -2), B(2; -1; 3), C(0; 2; 4).
a
=
A
B
=
(
1
−
2
)
2
+
(
3
+
1
)
2
+
(
−
2
−
3
)
2
=
1
+
16
+
25
=
42
≈
6.48
,
{\displaystyle a=AB={\sqrt {(1-2)^{2}+(3+1)^{2}+(-2-3)^{2}}}={\sqrt {1+16+25}}={\sqrt {42}}\approx 6.48,}
b
=
A
C
=
(
1
−
0
)
2
+
(
3
−
2
)
2
+
(
−
2
−
4
)
2
=
1
+
1
+
36
=
38
≈
6.16
,
{\displaystyle b=AC={\sqrt {(1-0)^{2}+(3-2)^{2}+(-2-4)^{2}}}={\sqrt {1+1+36}}={\sqrt {38}}\approx 6.16,}
c
=
B
C
=
(
2
−
0
)
2
+
(
−
1
−
2
)
2
+
(
3
−
4
)
2
=
4
+
9
+
1
=
14
≈
3.74.
{\displaystyle c=BC={\sqrt {(2-0)^{2}+(-1-2)^{2}+(3-4)^{2}}}={\sqrt {4+9+1}}={\sqrt {14}}\approx 3.74.}
p
=
42
+
38
+
14
2
≈
8.193406044.
{\displaystyle p={\frac {{\sqrt {42}}+{\sqrt {38}}+{\sqrt {14}}}{2}}\approx 8.193406044.}
S
≈
8.193406044
(
8.193406044
−
42
)
(
8.193406044
−
38
)
(
8.193406044
−
14
)
≈
{\displaystyle S\approx {\sqrt {8.193406044(8.193406044-{\sqrt {42}})(8.193406044-{\sqrt {38}})(8.193406044-{\sqrt {14}})}}\approx }
≈
8.193406044
⋅
1
,
712665346
⋅
2
,
028992041
⋅
4
,
451748657
=
126
,
750000
=
11.25833025.
{\displaystyle \approx {\sqrt {8.193406044\cdot 1,712665346\cdot 2,028992041\cdot 4,451748657}}={\sqrt {126,750000}}=11.25833025.}
Šio trikampio plotą galima apskaičiuoti naudojantis vektorine sandauga. AB=(2-1; -1-3; 3+2)=(1; -4; 5), AC=(0-1; 2-3; 4+2)=(-1; -1; 6).
A
B
×
A
C
=
|
i
j
k
1
−
4
5
−
1
−
1
6
|
=
|
−
4
5
−
1
6
|
i
−
|
1
5
−
1
6
|
j
+
|
1
−
4
−
1
−
1
|
k
=
−
19
i
−
11
j
−
5
k
=
(
−
19
;
−
11
;
−
5
)
.
{\displaystyle AB\times AC={\begin{vmatrix}i&j&k\\1&-4&5\\-1&-1&6\end{vmatrix}}={\begin{vmatrix}-4&5\\-1&6\end{vmatrix}}i-{\begin{vmatrix}1&5\\-1&6\end{vmatrix}}j+{\begin{vmatrix}1&-4\\-1&-1\end{vmatrix}}k=-19i-11j-5k=(-19;-11;-5).}
‖
A
B
×
A
C
‖
=
(
−
19
)
2
+
(
−
11
)
2
+
(
−
5
)
2
=
507
.
{\displaystyle \|AB\times AC\|={\sqrt {(-19)^{2}+(-11)^{2}+(-5)^{2}}}={\sqrt {507}}.}
S
Δ
A
B
C
=
1
2
‖
A
B
×
A
C
‖
=
1
2
507
≈
11.25833025.
{\displaystyle S_{\Delta ABC}={\frac {1}{2}}\|AB\times AC\|={\frac {1}{2}}{\sqrt {507}}\approx 11.25833025.}
Vektoriaus projekcijos į koordinačių ašis
keisti
Projekcija vieno vektoriaus į kitą vektorių
keisti
Pusiaukampinė tarp vektorių
keisti
Jei duoti vektoriai a =OA ir b =OB , tai pusiaukampinės ON =c (arba tiesiog, taško N koordinatės, kai taškas O (0; 0; 0)) koordinatės yra:
c
→
=
a
→
‖
a
→
‖
+
b
→
‖
b
→
‖
.
{\displaystyle {\vec {c}}={\frac {\vec {a}}{\|{\vec {a}}\|}}+{\frac {\vec {b}}{\|{\vec {b}}\|}}.}
Vektoriaus a ortas yra
a
→
‖
a
→
‖
.
{\displaystyle {\frac {\vec {a}}{\|{\vec {a}}\|}}.}
Vektoriaus ON ortas yra:
a
→
‖
a
→
‖
+
b
→
‖
b
→
‖
‖
a
→
‖
a
→
‖
+
b
→
‖
b
→
‖
‖
.
{\displaystyle {\frac {{\frac {\vec {a}}{\|{\vec {a}}\|}}+{\frac {\vec {b}}{\|{\vec {b}}\|}}}{\|{\frac {\vec {a}}{\|{\vec {a}}\|}}+{\frac {\vec {b}}{\|{\vec {b}}\|}}\|}}.}
Vektoriaus ortas ir vektorius yra vienakrypčiai, tačiau vektoriaus orto ilgis lygus 1.
‖
a
→
‖
a
→
‖
+
b
→
‖
b
→
‖
‖
a
→
‖
a
→
‖
+
b
→
‖
b
→
‖
‖
‖
=
1.
{\displaystyle \|{\frac {{\frac {\vec {a}}{\|{\vec {a}}\|}}+{\frac {\vec {b}}{\|{\vec {b}}\|}}}{\|{\frac {\vec {a}}{\|{\vec {a}}\|}}+{\frac {\vec {b}}{\|{\vec {b}}\|}}\|}}\|=1.}
Vektorių a ir b ortų ilgiai lygus vienam,
‖
a
→
‖
a
→
‖
‖
=
1
;
‖
b
→
‖
b
→
‖
‖
=
1.
{\displaystyle \|{\frac {\vec {a}}{\|{\vec {a}}\|}}\|=1;\,\,\,\|{\frac {\vec {b}}{\|{\vec {b}}\|}}\|=1.}
Vektorių padauginus iš skaliaro, vektroriaus ilgis pasikeičia, o kryptis išlieka ta pati.
Pavyzdis . Duoti vektoriai a =(5; 3), b =(4; 20). Pusiaukampinė yra:
c
→
=
a
→
‖
a
→
‖
+
b
→
‖
b
→
‖
=
5
i
+
3
j
5
2
+
3
2
+
4
i
+
20
j
4
2
+
20
2
=
5
i
+
3
j
25
+
9
+
4
i
+
20
j
16
+
400
=
5
i
34
+
3
j
34
+
4
i
416
+
20
j
416
=
{\displaystyle {\vec {c}}={\frac {\vec {a}}{\|{\vec {a}}\|}}+{\frac {\vec {b}}{\|{\vec {b}}\|}}={\frac {5i+3j}{\sqrt {5^{2}+3^{2}}}}+{\frac {4i+20j}{\sqrt {4^{2}+20^{2}}}}={\frac {5i+3j}{\sqrt {25+9}}}+{\frac {4i+20j}{\sqrt {16+400}}}={\frac {5i}{\sqrt {34}}}+{\frac {3j}{\sqrt {34}}}+{\frac {4i}{\sqrt {416}}}+{\frac {20j}{\sqrt {416}}}=}
=
5
416
+
4
34
34
⋅
416
i
+
3
416
+
20
34
34
⋅
416
j
=
5
⋅
4
26
+
4
34
34
⋅
4
26
i
+
3
⋅
4
26
+
20
34
34
⋅
4
26
j
=
{\displaystyle ={\frac {5{\sqrt {416}}+4{\sqrt {34}}}{{\sqrt {34}}\cdot {\sqrt {416}}}}i+{\frac {3{\sqrt {416}}+20{\sqrt {34}}}{{\sqrt {34}}\cdot {\sqrt {416}}}}j={\frac {5\cdot 4{\sqrt {26}}+4{\sqrt {34}}}{{\sqrt {34}}\cdot 4{\sqrt {26}}}}i+{\frac {3\cdot 4{\sqrt {26}}+20{\sqrt {34}}}{{\sqrt {34}}\cdot 4{\sqrt {26}}}}j=}
=
5
26
+
34
34
⋅
26
i
+
3
26
+
5
34
34
⋅
26
j
=
5
26
+
34
884
i
+
3
26
+
5
34
884
j
=
{\displaystyle ={\frac {5{\sqrt {26}}+{\sqrt {34}}}{{\sqrt {34}}\cdot {\sqrt {26}}}}i+{\frac {3{\sqrt {26}}+5{\sqrt {34}}}{{\sqrt {34}}\cdot {\sqrt {26}}}}j={\frac {5{\sqrt {26}}+{\sqrt {34}}}{\sqrt {884}}}i+{\frac {3{\sqrt {26}}+5{\sqrt {34}}}{\sqrt {884}}}j=}
=
0.857492925
i
+
0.514495755
j
+
0.196116135
i
+
0.980580675
j
=
1.053609061
i
+
1.495076431
j
=
(
1.053609061
;
1.495076431
)
.
{\displaystyle =0.857492925i+0.514495755j+0.196116135i+0.980580675j=1.053609061i+1.495076431j=(1.053609061;1.495076431).}
Jei yra taškai O (0; 0), A (5; 3), B (4; 20), tai taškas N (1.053609061; 1.495076431) su tašku O (0; 0) sudaro tiesę ON , kuri yra pusiaukampinė tarp tiesių OA ir OB .
Randame kampą tarp tiesių ON ir OB .
cos
ϕ
1
=
c
→
⋅
b
→
‖
c
→
‖
⋅
‖
b
→
‖
=
1.053609061
⋅
4
+
1.495076431
⋅
20
1.05360906
2
+
1.495076431
2
⋅
4
2
+
20
2
=
4.214436243
+
29.90152862
3.345345588
⋅
416
=
{\displaystyle \cos \phi _{1}={\frac {{\vec {c}}\cdot {\vec {b}}}{\|{\vec {c}}\|\cdot \|{\vec {b}}\|}}={\frac {1.053609061\cdot 4+1.495076431\cdot 20}{{\sqrt {1.05360906^{2}+1.495076431^{2}}}\cdot {\sqrt {4^{2}+20^{2}}}}}={\frac {4.214436243+29.90152862}{{\sqrt {3.345345588}}\cdot {\sqrt {416}}}}=}
=
34.11596487
37.30500991
=
0.914514295.
{\displaystyle ={\frac {34.11596487}{37.30500991}}=0.914514295.}
=
83
155
⋅
117
=
83
18135
=
83
134.6662541
=
0.616338521.
{\displaystyle ={\frac {83}{{\sqrt {155}}\cdot {\sqrt {117}}}}={\frac {83}{\sqrt {18135}}}={\frac {83}{134.6662541}}=0.616338521.}
ϕ
1
=
arccos
(
0.912101751
)
=
0.416490632
{\displaystyle \phi _{1}=\arccos(0.912101751)=0.416490632}
arba 23.86315547 laipsnio.
Randame kampą tarp tiesių OA ir OB , gauname:
cos
ϕ
2
=
a
→
⋅
b
→
‖
a
→
‖
⋅
‖
b
→
‖
=
5
⋅
4
+
3
⋅
20
5
2
+
3
2
⋅
4
2
+
20
2
=
20
+
60
34
⋅
416
=
80
14144
=
0.672672794.
{\displaystyle \cos \phi _{2}={\frac {{\vec {a}}\cdot {\vec {b}}}{\|{\vec {a}}\|\cdot \|{\vec {b}}\|}}={\frac {5\cdot 4+3\cdot 20}{{\sqrt {5^{2}+3^{2}}}\cdot {\sqrt {4^{2}+20^{2}}}}}={\frac {20+60}{{\sqrt {34}}\cdot {\sqrt {416}}}}={\frac {80}{\sqrt {14144}}}=0.672672794.}
ϕ
2
=
arccos
80
14144
=
arccos
(
0.672672794
)
=
0.832981266
{\displaystyle \phi _{2}=\arccos {\frac {80}{\sqrt {14144}}}=\arccos(0.672672794)=0.832981266}
arba 47.72631099 laipsnių. Palyginimui,
2
ϕ
1
=
2
⋅
0.416490632
=
0.832981265.
{\displaystyle 2\phi _{1}=2\cdot 0.416490632=0.832981265.}
Rasime pusiaukampinę kampo tarp vektorių AB ir AC . Sudėję šių vektorių ortus gausime naują vektorių AG , kurio koordinatės yra:
A
G
→
=
A
B
→
‖
A
B
→
‖
+
A
C
→
‖
A
C
→
‖
=
2
i
+
3
j
+
1
k
2
2
+
3
2
+
1
2
+
−
4
i
+
4
j
−
1
k
(
−
4
)
2
+
4
2
+
(
−
1
)
2
=
2
i
+
3
j
+
1
k
4
+
9
+
1
+
−
4
i
+
4
j
−
1
k
16
+
16
+
1
=
{\displaystyle {\vec {AG}}={\frac {\vec {AB}}{\|{\vec {AB}}\|}}+{\frac {\vec {AC}}{\|{\vec {AC}}\|}}={\frac {2i+3j+1k}{\sqrt {2^{2}+3^{2}+1^{2}}}}+{\frac {-4i+4j-1k}{\sqrt {(-4)^{2}+4^{2}+(-1)^{2}}}}={\frac {2i+3j+1k}{\sqrt {4+9+1}}}+{\frac {-4i+4j-1k}{\sqrt {16+16+1}}}=}
=
2
i
+
3
j
+
1
k
14
+
−
4
i
+
4
j
−
1
k
33
=
2
i
14
+
−
4
i
33
+
3
j
14
+
4
j
33
+
k
14
+
−
k
33
=
2
33
−
4
14
14
⋅
33
i
+
3
33
+
4
14
14
⋅
33
j
+
33
−
14
14
⋅
33
k
=
{\displaystyle ={\frac {2i+3j+1k}{\sqrt {14}}}+{\frac {-4i+4j-1k}{\sqrt {33}}}={\frac {2i}{\sqrt {14}}}+{\frac {-4i}{\sqrt {33}}}+{\frac {3j}{\sqrt {14}}}+{\frac {4j}{\sqrt {33}}}+{\frac {k}{\sqrt {14}}}+{\frac {-k}{\sqrt {33}}}={\frac {2{\sqrt {33}}-4{\sqrt {14}}}{{\sqrt {14}}\cdot {\sqrt {33}}}}i+{\frac {3{\sqrt {33}}+4{\sqrt {14}}}{{\sqrt {14}}\cdot {\sqrt {33}}}}j+{\frac {{\sqrt {33}}-{\sqrt {14}}}{{\sqrt {14}}\cdot {\sqrt {33}}}}k=}
=
2
33
−
4
14
462
i
+
3
33
+
4
14
462
j
+
33
−
14
462
k
=
−
0.16178814
i
+
1.49809435
j
+
0.093183585
k
.
{\displaystyle ={\frac {2{\sqrt {33}}-4{\sqrt {14}}}{\sqrt {462}}}i+{\frac {3{\sqrt {33}}+4{\sqrt {14}}}{\sqrt {462}}}j+{\frac {{\sqrt {33}}-{\sqrt {14}}}{\sqrt {462}}}k=-0.16178814i+1.49809435j+0.093183585k.}
Rasime kampą tarp vektoriaus AG ={-0.16178814; 1.49809435; 0.093183585} ir vektoriaus AB ={2; 3; 1}. Taigi,
cos
ϕ
1
=
−
0.16178814
⋅
2
+
1.49809435
⋅
3
+
0.093183585
⋅
1
(
−
0.16178814
)
2
+
1.49809435
2
+
0.093183585
2
⋅
2
2
+
3
2
+
1
2
=
{\displaystyle \cos \phi _{1}={\frac {-0.16178814\cdot 2+1.49809435\cdot 3+0.093183585\cdot 1}{{\sqrt {(-0.16178814)^{2}+1.49809435^{2}+0.093183585^{2}}}\cdot {\sqrt {2^{2}+3^{2}+1^{2}}}}}=}
=
−
0.32357628
+
4.49428305
+
0.093183585
0.026175402
+
2.244286682
+
0.00868318
⋅
4
+
9
+
1
=
4.263890355
2.279145264
⋅
14
=
4.263890355
31.9080337
=
4.263890355
5.648719651
=
0.754841914.
{\displaystyle ={\frac {-0.32357628+4.49428305+0.093183585}{{\sqrt {0.026175402+2.244286682+0.00868318}}\cdot {\sqrt {4+9+1}}}}={\frac {4.263890355}{{\sqrt {2.279145264}}\cdot {\sqrt {14}}}}={\frac {4.263890355}{\sqrt {31.9080337}}}={\frac {4.263890355}{5.648719651}}=0.754841914.}
ϕ
1
=
arccos
(
0.754841914
)
=
0.715383259
{\displaystyle \phi _{1}=\arccos(0.754841914)=0.715383259}
radiano arba 40.98844149 laipsnio.
Patikrinimui, rasime kampą tarp vektoriaus AC ={-4; 4; -1} ir AB ={2; 3; 1}, taigi
cos
ϕ
2
=
(
−
4
)
⋅
2
+
4
⋅
3
+
(
−
1
)
⋅
1
(
−
4
)
2
+
4
2
+
(
−
1
)
2
⋅
2
2
+
3
2
+
1
2
=
−
8
+
12
−
1
16
+
16
+
1
⋅
4
+
9
+
1
=
3
33
⋅
14
=
3
462
=
0.139572631.
{\displaystyle \cos \phi _{2}={\frac {(-4)\cdot 2+4\cdot 3+(-1)\cdot 1}{{\sqrt {(-4)^{2}+4^{2}+(-1)^{2}}}\cdot {\sqrt {2^{2}+3^{2}+1^{2}}}}}={\frac {-8+12-1}{{\sqrt {16+16+1}}\cdot {\sqrt {4+9+1}}}}={\frac {3}{{\sqrt {33}}\cdot {\sqrt {14}}}}={\frac {3}{\sqrt {462}}}=0.139572631.}
ϕ
2
=
arccos
3
462
=
1.430766518
{\displaystyle \phi _{2}=\arccos {\frac {3}{\sqrt {462}}}=1.430766518}
radiano arba 81,97688296 laipsnio. Patikriname, kad
ϕ
2
=
2
⋅
ϕ
1
=
2
⋅
40.98844149
=
81.97688298.
{\displaystyle \phi _{2}=2\cdot \phi _{1}=2\cdot 40.98844149=81.97688298.}
Kampo tarp vektorių radimas su kosinusu
keisti
Kampas tarp dviejų vektorių yra išreiškiamas per jų skaliarinę sandaugą:
cos
ϕ
=
a
⋅
b
|
|
a
|
|
⋅
|
|
b
|
|
{\displaystyle \cos \phi ={\frac {\mathbf {a} \cdot \mathbf {b} }{||\mathbf {a} ||\cdot ||\mathbf {b} ||}}}
.
ϕ
=
arccos
a
⋅
b
|
|
a
|
|
⋅
|
|
b
|
|
.
{\displaystyle \phi =\arccos {\frac {\mathbf {a} \cdot \mathbf {b} }{||\mathbf {a} ||\cdot ||\mathbf {b} ||}}.}
Remiantis šia formule tampa akivaizdu kodėl yra sakoma, jog skaliarinė vektorių sandauga parodo vektorių atitikimą (panašumą) vienas kitam.
a
⋅
b
=
|
|
a
|
|
⋅
|
|
b
|
|
⋅
cos
ϕ
.
{\displaystyle \mathbf {a} \cdot \mathbf {b} =||\mathbf {a} ||\cdot ||\mathbf {b} ||\cdot \cos \phi .}
Pavyzdžiui, duoti vektoriai a=(1; -2; 2), b=(3; 0; -4).
cos
ϕ
=
a
⋅
b
|
|
a
|
|
⋅
|
|
b
|
|
=
1
⋅
3
+
(
−
2
)
⋅
0
+
2
⋅
(
−
4
)
1
2
+
(
−
2
)
2
+
2
2
⋅
3
2
+
0
2
+
(
−
4
)
2
=
3
−
8
1
+
4
+
4
⋅
9
+
0
+
16
=
{\displaystyle \cos \phi ={\frac {a\cdot b}{||a||\cdot ||b||}}={\frac {1\cdot 3+(-2)\cdot 0+2\cdot (-4)}{{\sqrt {1^{2}+(-2)^{2}+2^{2}}}\cdot {\sqrt {3^{2}+0^{2}+(-4)^{2}}}}}={\frac {3-8}{{\sqrt {1+4+4}}\cdot {\sqrt {9+0+16}}}}=}
=
−
5
9
⋅
25
=
−
5
3
⋅
5
=
−
1
3
.
{\displaystyle ={\frac {-5}{{\sqrt {9}}\cdot {\sqrt {25}}}}={\frac {-5}{3\cdot 5}}=-{\frac {1}{3}}.}
ϕ
=
arccos
−
1
3
=
1.910633236
{\displaystyle \phi =\arccos {\frac {-1}{3}}=1.910633236}
arba 109,4712206 laipsnių.
Taikydami kosinusų toeremą patikrinsime ar kampas
ϕ
{\displaystyle \phi }
surastas teisingai. Atkarpos f ilgis iš taško a=(1; -2; 2) iki taško b=(3; 0; -4) yra lygus
f
=
(
1
−
3
)
2
+
(
−
2
−
0
)
2
+
(
2
−
(
−
4
)
)
2
=
4
+
4
+
36
=
44
=
2
11
=
6.633249581.
{\displaystyle f={\sqrt {(1-3)^{2}+(-2-0)^{2}+(2-(-4))^{2}}}={\sqrt {4+4+36}}={\sqrt {44}}=2{\sqrt {11}}=6.633249581.}
Iš kosinusų teoremos žinome, kad
f
2
=
a
2
+
b
2
−
2
a
b
cos
(
ϕ
)
{\displaystyle f^{2}\ =a^{2}+b^{2}-2ab\cos(\phi )}
;
cos
ϕ
=
f
2
−
a
2
−
b
2
−
2
a
b
=
(
2
11
)
2
−
3
2
−
5
2
−
2
⋅
3
⋅
5
=
44
−
9
−
25
−
30
=
10
−
30
=
−
1
3
.
{\displaystyle \cos \phi ={f^{2}-a^{2}-b^{2} \over -2ab}={(2{\sqrt {11}})^{2}-3^{2}-5^{2} \over -2\cdot 3\cdot 5}={44-9-25 \over -30}={10 \over -30}=-{1 \over 3}.}
Pavyzdžiui, duoti vektoriai a=(1; -2; 0), b=(3; 0; 0).
cos
ϕ
=
a
⋅
b
|
|
a
|
|
⋅
|
|
b
|
|
=
1
⋅
3
+
(
−
2
)
⋅
0
+
0
⋅
0
1
2
+
(
−
2
)
2
⋅
3
2
+
0
2
=
3
1
+
4
⋅
9
+
0
=
{\displaystyle \cos \phi ={\frac {a\cdot b}{||a||\cdot ||b||}}={\frac {1\cdot 3+(-2)\cdot 0+0\cdot 0}{{\sqrt {1^{2}+(-2)^{2}}}\cdot {\sqrt {3^{2}+0^{2}}}}}={\frac {3}{{\sqrt {1+4}}\cdot {\sqrt {9+0}}}}=}
=
3
5
⋅
3
=
1
5
=
0
,
447213595.
{\displaystyle ={\frac {3}{{\sqrt {5}}\cdot 3}}={1 \over {\sqrt {5}}}=0,447213595.}
ϕ
=
arccos
1
5
=
1.107148718
{\displaystyle \phi =\arccos {1 \over {\sqrt {5}}}=1.107148718}
arba 63,43494882 laipsnių.
Pavyzdžiui, duoti vektoriai a =(3; 5; 11), b =(7; 8; 2).
cos
ϕ
=
a
⋅
b
|
|
a
|
|
⋅
|
|
b
|
|
=
3
⋅
7
+
5
⋅
8
+
11
⋅
2
3
2
+
5
2
+
11
2
⋅
7
2
+
8
2
+
2
2
=
21
+
40
+
22
9
+
25
+
121
⋅
49
+
64
+
4
=
{\displaystyle \cos \phi ={\frac {a\cdot b}{||a||\cdot ||b||}}={\frac {3\cdot 7+5\cdot 8+11\cdot 2}{{\sqrt {3^{2}+5^{2}+11^{2}}}\cdot {\sqrt {7^{2}+8^{2}+2^{2}}}}}={\frac {21+40+22}{{\sqrt {9+25+121}}\cdot {\sqrt {49+64+4}}}}=}
=
83
155
⋅
117
=
83
18135
=
83
134.6662541
=
0.616338521.
{\displaystyle ={\frac {83}{{\sqrt {155}}\cdot {\sqrt {117}}}}={\frac {83}{\sqrt {18135}}}={\frac {83}{134.6662541}}=0.616338521.}
ϕ
=
arccos
(
0.616338521
)
=
0.906711738
{\displaystyle \phi =\arccos(0.616338521)=0.906711738}
arba 51.95075583 laipsnių.
Taikydami kosinusų toeremą patikrinsime ar kampas
ϕ
{\displaystyle \phi }
surastas teisingai. Atkarpos f ilgis iš taško a=(3; 5; 11) iki taško b=(7; 8; 2) yra lygus
f
=
(
3
−
7
)
2
+
(
5
−
8
)
2
+
(
11
−
2
)
2
=
16
+
9
+
81
=
106
=
10.29563014.
{\displaystyle f={\sqrt {(3-7)^{2}+(5-8)^{2}+(11-2)^{2}}}={\sqrt {16+9+81}}={\sqrt {106}}=10.29563014.}
Iš kosinusų teoremos žinome, kad
f
2
=
a
2
+
b
2
−
2
a
b
cos
(
ϕ
)
{\displaystyle f^{2}\ =a^{2}+b^{2}-2ab\cos(\phi )}
;
cos
ϕ
=
f
2
−
a
2
−
b
2
−
2
a
b
=
(
106
)
2
−
(
155
)
2
−
(
117
)
2
−
2
⋅
155
⋅
117
=
106
−
155
−
117
−
2
18135
=
−
166
−
2
18135
=
{\displaystyle \cos \phi ={f^{2}-a^{2}-b^{2} \over -2ab}={({\sqrt {106}})^{2}-({\sqrt {155}})^{2}-({\sqrt {117}})^{2} \over -2\cdot {\sqrt {155}}\cdot {\sqrt {117}}}={106-155-117 \over -2{\sqrt {18135}}}={-166 \over -2{\sqrt {18135}}}=}
=
83
18135
=
0.616338521.
{\displaystyle ={83 \over {\sqrt {18135}}}=0.616338521.}
Rasti, kampą tarp vektoriaus
a
→
=
{
1
;
1
;
1
}
{\displaystyle {\vec {a}}=\{1;1;1\}}
ir vektoriaus
a
→
′
=
{
2
;
3
;
−
4
}
.
{\displaystyle {\vec {a}}'=\{2;3;-4\}.}
cos
α
=
a
→
⋅
a
→
′
‖
a
→
‖
⋅
‖
a
→
′
‖
=
1
⋅
2
+
1
⋅
3
+
1
⋅
(
−
4
)
1
2
+
1
2
+
1
2
⋅
2
2
+
3
2
+
(
−
4
)
2
=
2
+
3
−
4
1
+
1
+
1
⋅
4
+
9
+
16
=
{\displaystyle \cos \alpha ={\frac {{\vec {a}}\cdot {\vec {a}}'}{\|{\vec {a}}\|\cdot \|{\vec {a}}'\|}}={\frac {1\cdot 2+1\cdot 3+1\cdot (-4)}{{\sqrt {1^{2}+1^{2}+1^{2}}}\cdot {\sqrt {2^{2}+3^{2}+(-4)^{2}}}}}={\frac {2+3-4}{{\sqrt {1+1+1}}\cdot {\sqrt {4+9+16}}}}=}
=
1
3
⋅
29
=
1
87
=
1
9.327379053
=
0.107211253.
{\displaystyle ={\frac {1}{{\sqrt {3}}\cdot {\sqrt {29}}}}={\frac {1}{\sqrt {87}}}={\frac {1}{9.327379053}}=0.107211253.}
α
=
arccos
1
87
=
arccos
(
0.107211253
)
=
1.463378618
{\displaystyle \alpha =\arccos {\frac {1}{\sqrt {87}}}=\arccos(0.107211253)=1.463378618}
arba 83.84541865 laipsniai.
Įrodyti, kad kampas tarp vektoriaus
a
→
=
{
2
;
2
t
;
−
t
2
}
{\displaystyle {\vec {a}}=\{2;2t;-t^{2}\}}
orto
a
→
∘
=
{
2
2
+
t
2
;
2
t
2
+
t
2
;
−
t
2
2
+
t
2
}
{\displaystyle {\vec {a}}^{\circ }=\{{\frac {2}{2+t^{2}}};{\frac {2t}{2+t^{2}}};{\frac {-t^{2}}{2+t^{2}}}\}}
ir vektoriaus
a
→
{\displaystyle {\vec {a}}}
orto išvestinės lygus 90 laipsnių, kai parametras
t
=
1
{\displaystyle t=1}
.
‖
a
→
‖
=
2
2
+
(
2
t
)
2
+
(
−
t
2
)
2
=
4
+
4
t
2
+
t
4
=
(
t
2
+
2
)
2
=
t
2
+
2.
{\displaystyle \|{\vec {a}}\|={\sqrt {2^{2}+(2t)^{2}+(-t^{2})^{2}}}={\sqrt {4+4t^{2}+t^{4}}}={\sqrt {(t^{2}+2)^{2}}}=t^{2}+2.}
Sprendimas .
Vektoriaus
a
→
∘
{\displaystyle {\vec {a}}^{\circ }}
išvestinė yra:
(
a
→
∘
)
′
=
{
(
2
2
+
t
2
)
′
;
(
2
t
2
+
t
2
)
′
;
(
−
t
2
2
+
t
2
)
′
}
=
{
−
2
⋅
2
t
(
2
+
t
2
)
2
;
2
(
2
+
t
2
)
−
2
t
⋅
2
t
(
2
+
t
2
)
2
;
−
2
t
(
2
+
t
2
)
−
(
−
t
2
)
⋅
2
t
(
2
+
t
2
)
2
}
=
{\displaystyle ({\vec {a}}^{\circ })'=\{({\frac {2}{2+t^{2}}})';({\frac {2t}{2+t^{2}}})';({\frac {-t^{2}}{2+t^{2}}})'\}=\{-{\frac {2\cdot 2t}{(2+t^{2})^{2}}};{\frac {2(2+t^{2})-2t\cdot 2t}{(2+t^{2})^{2}}};{\frac {-2t(2+t^{2})-(-t^{2})\cdot 2t}{(2+t^{2})^{2}}}\}=}
=
{
−
4
t
(
2
+
t
2
)
2
;
4
−
2
t
2
(
2
+
t
2
)
2
;
−
4
t
(
2
+
t
2
)
2
}
.
{\displaystyle =\{{\frac {-4t}{(2+t^{2})^{2}}};{\frac {4-2t^{2}}{(2+t^{2})^{2}}};{\frac {-4t}{(2+t^{2})^{2}}}\}.}
Randame vektorių reikšmes taške
M
1
(
1
;
1
;
1
)
{\displaystyle M_{1}(1;1;1)}
:
a
→
∘
|
t
=
1
=
{
2
2
+
1
2
;
2
⋅
1
2
+
1
2
;
−
1
2
2
+
1
2
}
=
{
2
3
;
2
3
;
−
1
3
}
;
{\displaystyle {\vec {a}}^{\circ }|_{t=1}=\{{\frac {2}{2+1^{2}}};{\frac {2\cdot 1}{2+1^{2}}};{\frac {-1^{2}}{2+1^{2}}}\}=\{{\frac {2}{3}};{\frac {2}{3}};{\frac {-1}{3}}\};}
(
a
→
∘
)
′
|
t
=
1
=
{
−
4
⋅
1
(
2
+
1
2
)
2
;
4
−
2
⋅
1
2
(
2
+
1
2
)
2
;
−
4
⋅
1
(
2
+
1
2
)
2
}
=
{
−
4
9
;
2
9
;
−
4
9
}
.
{\displaystyle ({\vec {a}}^{\circ })'|_{t=1}=\{{\frac {-4\cdot 1}{(2+1^{2})^{2}}};{\frac {4-2\cdot 1^{2}}{(2+1^{2})^{2}}};{\frac {-4\cdot 1}{(2+1^{2})^{2}}}\}=\{{\frac {-4}{9}};{\frac {2}{9}};{\frac {-4}{9}}\}.}
Randame kampą tarp vektoriaus
a
→
∘
{\displaystyle {\vec {a}}^{\circ }}
ir vektoriaus
(
a
→
∘
)
′
{\displaystyle ({\vec {a}}^{\circ })'}
taške
M
1
(
1
;
1
;
1
)
{\displaystyle M_{1}(1;1;1)}
:
cos
α
=
a
→
∘
|
t
=
1
⋅
(
a
→
∘
)
′
|
t
=
1
‖
a
→
∘
|
t
=
1
‖
⋅
‖
(
a
→
∘
)
′
|
t
=
1
‖
=
2
3
⋅
−
4
9
+
2
3
⋅
2
9
+
−
1
3
⋅
−
4
9
(
2
3
)
2
+
(
2
3
)
2
+
(
−
1
3
)
2
⋅
(
−
4
9
)
2
+
(
2
9
)
2
+
(
−
4
9
)
2
=
−
8
27
+
4
27
+
4
27
4
9
+
4
9
+
1
9
⋅
16
81
+
4
81
+
16
81
=
{\displaystyle \cos \alpha ={\frac {{\vec {a}}^{\circ }|_{t=1}\cdot ({\vec {a}}^{\circ })'|_{t=1}}{\|{\vec {a}}^{\circ }|_{t=1}\|\cdot \|({\vec {a}}^{\circ })'|_{t=1}\|}}={\frac {{\frac {2}{3}}\cdot {\frac {-4}{9}}+{\frac {2}{3}}\cdot {\frac {2}{9}}+{\frac {-1}{3}}\cdot {\frac {-4}{9}}}{{\sqrt {({\frac {2}{3}})^{2}+({\frac {2}{3}})^{2}+({\frac {-1}{3}})^{2}}}\cdot {\sqrt {({\frac {-4}{9}})^{2}+({\frac {2}{9}})^{2}+({\frac {-4}{9}})^{2}}}}}={\frac {{\frac {-8}{27}}+{\frac {4}{27}}+{\frac {4}{27}}}{{\sqrt {{\frac {4}{9}}+{\frac {4}{9}}+{\frac {1}{9}}}}\cdot {\sqrt {{\frac {16}{81}}+{\frac {4}{81}}+{\frac {16}{81}}}}}}=}
=
0
1
⋅
36
81
=
0
1
⋅
6
9
=
0
2
3
=
0.
{\displaystyle ={\frac {0}{{\sqrt {1}}\cdot {\sqrt {\frac {36}{81}}}}}={\frac {0}{1\cdot {\frac {6}{9}}}}={\frac {0}{\frac {2}{3}}}=0.}
α
=
arccos
(
0
)
=
π
2
=
1.570796327
{\displaystyle \alpha =\arccos(0)={\frac {\pi }{2}}=1.570796327}
arba 90 laipsnių.
Duota kreivė užrašyta parametrinėmis lygtimis
x
=
ϕ
(
t
)
=
t
,
y
=
ψ
(
t
)
=
t
2
,
z
=
ω
(
t
)
=
t
3
.
{\displaystyle x=\phi (t)=t,\quad y=\psi (t)=t^{2},\quad z=\omega (t)=t^{3}.}
Rasti:
a) kreivės liestinės vektorių;
b) normalizuotą kreivės liestinės vektorių (ortą);
c) kreivės normalės vektorių iš normalizuoto liestinės vektoriaus;
d) kampą tarp liestinės orto (vektoriaus) ir normalės vektoriaus, kai parametro t reikšmė lygi 1 (kai
t
=
1
{\displaystyle t=1}
);
e) kampą tarp liestinės vektoriaus ir normalės vektoriaus, kai
t
=
1
{\displaystyle t=1}
, naudojantis normalės vektororiaus formule
n
=
{
1
±
ϕ
′
(
t
)
;
1
±
ψ
′
(
t
)
;
1
±
ω
′
(
t
)
}
,
{\displaystyle \mathbf {n} =\{{\frac {1}{\pm \phi '(t)}};{\frac {1}{\pm \psi '(t)}};{\frac {1}{\pm \omega '(t)}}\},}
kuri šiai kreivei yra
n
=
{
2
−
3
ϕ
′
(
t
)
;
1
3
ψ
′
(
t
)
;
1
3
ω
′
(
t
)
}
;
{\displaystyle \mathbf {n} =\{{\frac {2}{-3\phi '(t)}};{\frac {1}{3\psi '(t)}};{\frac {1}{3\omega '(t)}}\};}
padauginti iš
2
3
{\displaystyle {\frac {2}{3}}}
reikia tą funkciją, kurios rodiklis ant t mažiausias; kadangi
x
=
ϕ
(
t
)
{\displaystyle x=\phi (t)}
reikia prilyginti t , jei
ϕ
(
t
)
{\displaystyle \phi (t)}
turi mažiausią rodiklį virš t , tai gaunasi, kad parametro t ir
ϕ
(
t
)
{\displaystyle \phi (t)}
reikšmė nekinta (funkcijos
ϕ
(
t
)
=
t
{\displaystyle \phi (t)=t}
kitimo greitis visose taškuose lygus nuliui, nes
ϕ
′
(
t
)
=
t
′
=
1
{\displaystyle \phi '(t)=t'=1}
), bet linija vis tiek kyla aukštyn, todėl tą linijos kilimą reikia kompensuoti
1
3
{\displaystyle {\frac {1}{3}}}
(nes trys koordinačių ašys), kad tikrai būtų liestinės normalė, bet taip padaryti galima tik padarius
1
/
ϕ
′
(
t
)
{\displaystyle 1/\phi '(t)}
reikšmę viena trečiąja didesne.
f) kampą tarp liestinės vektoriaus ir normalės vektoriaus, kai
t
=
5
{\displaystyle t=5}
, naudojantis normalės vektororiaus formule
n
=
{
2
−
3
ϕ
′
(
t
)
;
1
3
ψ
′
(
t
)
;
1
3
ω
′
(
t
)
}
.
{\displaystyle \mathbf {n} =\{{\frac {2}{-3\phi '(t)}};{\frac {1}{3\psi '(t)}};{\frac {1}{3\omega '(t)}}\}.}
Sprendimas .
a) Kreivės liestinės vektorius yra
a
=
{
t
′
;
(
t
2
)
′
;
(
t
3
)
′
}
=
{
1
;
2
t
;
3
t
2
}
.
{\displaystyle \mathbf {a} =\{t';(t^{2})';(t^{3})'\}=\{1;2t;3t^{2}\}.}
b) Vektoriaus
a
{\displaystyle \mathbf {a} }
ilgis yra:
‖
a
‖
=
1
2
+
(
2
t
)
2
+
(
3
t
2
)
2
=
1
+
4
t
2
+
9
t
4
.
{\displaystyle \|\mathbf {a} \|={\sqrt {1^{2}+(2t)^{2}+(3t^{2})^{2}}}={\sqrt {1+4t^{2}+9t^{4}}}.}
Kreivės liestinės normalizuotas vektorius yra šis:
a
∘
=
a
‖
a
‖
=
{
1
1
+
4
t
2
+
9
t
4
;
2
t
1
+
4
t
2
+
9
t
4
;
3
t
2
1
+
4
t
2
+
9
t
4
}
;
{\displaystyle \mathbf {a} ^{\circ }={\frac {\mathbf {a} }{\|\mathbf {a} \|}}=\{{\frac {1}{\sqrt {1+4t^{2}+9t^{4}}}};{\frac {2t}{\sqrt {1+4t^{2}+9t^{4}}}};{\frac {3t^{2}}{\sqrt {1+4t^{2}+9t^{4}}}}\};}
jo reikšmė, kai
t
=
1
{\displaystyle t=1}
yra
a
∘
|
t
=
1
=
{
1
1
+
4
+
9
;
2
1
+
4
+
9
;
3
1
+
4
+
9
}
,
{\displaystyle \mathbf {a} ^{\circ }|_{t=1}=\{{\frac {1}{\sqrt {1+4+9}}};{\frac {2}{\sqrt {1+4+9}}};{\frac {3}{\sqrt {1+4+9}}}\},}
a
∘
|
t
=
1
=
{
1
14
;
2
14
;
3
14
}
=
{
0.267261241
;
0.534522483
;
0.801783725
}
.
{\displaystyle \mathbf {a} ^{\circ }|_{t=1}=\{{\frac {1}{\sqrt {14}}};{\frac {2}{\sqrt {14}}};{\frac {3}{\sqrt {14}}}\}=\{0.267261241;0.534522483;0.801783725\}.}
c) Kreivės normalės vektorius yra liestinės vektoriaus orto išvestinė:
n
=
(
a
∘
)
′
=
{
(
1
1
+
4
t
2
+
9
t
4
)
′
;
(
2
t
1
+
4
t
2
+
9
t
4
)
′
;
(
3
t
2
1
+
4
t
2
+
9
t
4
)
′
}
,
{\displaystyle \mathbf {n} =(\mathbf {a} ^{\circ })'=\{({\frac {1}{\sqrt {1+4t^{2}+9t^{4}}}})';({\frac {2t}{\sqrt {1+4t^{2}+9t^{4}}}})';({\frac {3t^{2}}{\sqrt {1+4t^{2}+9t^{4}}}})'\},}
n
=
{
−
(
1
+
4
t
2
+
9
t
4
)
′
2
(
1
+
4
t
2
+
9
t
4
)
3
;
(
2
t
)
′
1
+
4
t
2
+
9
t
4
−
2
t
(
1
+
4
t
2
+
9
t
4
)
′
(
1
+
4
t
2
+
9
t
4
)
2
;
(
3
t
2
)
′
1
+
4
t
2
+
9
t
4
−
3
t
2
(
1
+
4
t
2
+
9
t
4
)
′
(
1
+
4
t
2
+
9
t
4
)
2
}
,
{\displaystyle \mathbf {n} =\{-{\frac {(1+4t^{2}+9t^{4})'}{2{\sqrt {(1+4t^{2}+9t^{4})^{3}}}}};{\frac {(2t)'{\sqrt {1+4t^{2}+9t^{4}}}-2t({\sqrt {1+4t^{2}+9t^{4}}})'}{({\sqrt {1+4t^{2}+9t^{4}}})^{2}}};{\frac {(3t^{2})'{\sqrt {1+4t^{2}+9t^{4}}}-3t^{2}({\sqrt {1+4t^{2}+9t^{4}}})'}{({\sqrt {1+4t^{2}+9t^{4}}})^{2}}}\},}
n
=
{
−
8
t
+
36
t
3
2
(
1
+
4
t
2
+
9
t
4
)
3
;
2
1
+
4
t
2
+
9
t
4
−
2
t
⋅
(
1
+
4
t
2
+
9
t
4
)
′
2
1
+
4
t
2
+
9
t
4
1
+
4
t
2
+
9
t
4
;
6
t
1
+
4
t
2
+
9
t
4
−
3
t
2
⋅
(
1
+
4
t
2
+
9
t
4
)
′
2
1
+
4
t
2
+
9
t
4
1
+
4
t
2
+
9
t
4
}
,
{\displaystyle \mathbf {n} =\{-{\frac {8t+36t^{3}}{2{\sqrt {(1+4t^{2}+9t^{4})^{3}}}}};{\frac {2{\sqrt {1+4t^{2}+9t^{4}}}-2t\cdot {\frac {(1+4t^{2}+9t^{4})'}{2{\sqrt {1+4t^{2}+9t^{4}}}}}}{1+4t^{2}+9t^{4}}};{\frac {6t{\sqrt {1+4t^{2}+9t^{4}}}-3t^{2}\cdot {\frac {(1+4t^{2}+9t^{4})'}{2{\sqrt {1+4t^{2}+9t^{4}}}}}}{1+4t^{2}+9t^{4}}}\},}
n
=
{
−
8
t
+
36
t
3
2
(
1
+
4
t
2
+
9
t
4
)
3
;
2
1
+
4
t
2
+
9
t
4
−
2
t
⋅
8
t
+
36
t
3
2
1
+
4
t
2
+
9
t
4
1
+
4
t
2
+
9
t
4
;
6
t
1
+
4
t
2
+
9
t
4
−
3
t
2
⋅
8
t
+
36
t
3
2
1
+
4
t
2
+
9
t
4
1
+
4
t
2
+
9
t
4
}
,
{\displaystyle \mathbf {n} =\{-{\frac {8t+36t^{3}}{2{\sqrt {(1+4t^{2}+9t^{4})^{3}}}}};{\frac {2{\sqrt {1+4t^{2}+9t^{4}}}-2t\cdot {\frac {8t+36t^{3}}{2{\sqrt {1+4t^{2}+9t^{4}}}}}}{1+4t^{2}+9t^{4}}};{\frac {6t{\sqrt {1+4t^{2}+9t^{4}}}-3t^{2}\cdot {\frac {8t+36t^{3}}{2{\sqrt {1+4t^{2}+9t^{4}}}}}}{1+4t^{2}+9t^{4}}}\},}
n
=
{
−
8
t
+
36
t
3
2
(
1
+
4
t
2
+
9
t
4
)
3
;
2
1
+
4
t
2
+
9
t
4
−
2
t
⋅
8
t
+
36
t
3
2
(
1
+
4
t
2
+
9
t
4
)
3
;
6
t
1
+
4
t
2
+
9
t
4
−
3
t
2
⋅
8
t
+
36
t
3
2
(
1
+
4
t
2
+
9
t
4
)
3
}
,
{\displaystyle \mathbf {n} =\{-{\frac {8t+36t^{3}}{2{\sqrt {(1+4t^{2}+9t^{4})^{3}}}}};{\frac {2}{\sqrt {1+4t^{2}+9t^{4}}}}-2t\cdot {\frac {8t+36t^{3}}{2{\sqrt {(1+4t^{2}+9t^{4})^{3}}}}};{\frac {6t}{\sqrt {1+4t^{2}+9t^{4}}}}-3t^{2}\cdot {\frac {8t+36t^{3}}{2{\sqrt {(1+4t^{2}+9t^{4})^{3}}}}}\},}
n
=
{
−
4
t
+
18
t
3
(
1
+
4
t
2
+
9
t
4
)
3
;
2
1
+
4
t
2
+
9
t
4
−
2
t
(
4
t
+
18
t
3
)
(
1
+
4
t
2
+
9
t
4
)
3
;
6
t
1
+
4
t
2
+
9
t
4
−
3
t
2
(
4
t
+
18
t
3
)
(
1
+
4
t
2
+
9
t
4
)
3
}
;
{\displaystyle \mathbf {n} =\{-{\frac {4t+18t^{3}}{\sqrt {(1+4t^{2}+9t^{4})^{3}}}};{\frac {2}{\sqrt {1+4t^{2}+9t^{4}}}}-{\frac {2t(4t+18t^{3})}{\sqrt {(1+4t^{2}+9t^{4})^{3}}}};{\frac {6t}{\sqrt {1+4t^{2}+9t^{4}}}}-{\frac {3t^{2}(4t+18t^{3})}{\sqrt {(1+4t^{2}+9t^{4})^{3}}}}\};}
su reikšme
t
=
1
{\displaystyle t=1}
kreivės normalės vektorius statmenas liestienei yra:
n
|
t
=
1
=
{
−
4
+
18
(
1
+
4
+
9
)
3
;
2
1
+
4
+
9
−
2
(
4
+
18
)
(
1
+
4
+
9
)
3
;
6
1
+
4
+
9
−
3
(
4
+
18
)
(
1
+
4
+
9
)
3
}
,
{\displaystyle \mathbf {n} |_{t=1}=\{-{\frac {4+18}{\sqrt {(1+4+9)^{3}}}};{\frac {2}{\sqrt {1+4+9}}}-{\frac {2(4+18)}{\sqrt {(1+4+9)^{3}}}};{\frac {6}{\sqrt {1+4+9}}}-{\frac {3(4+18)}{\sqrt {(1+4+9)^{3}}}}\},}
n
|
t
=
1
=
{
−
22
14
3
;
2
14
−
2
⋅
22
14
3
;
6
14
−
3
⋅
22
14
3
}
,
{\displaystyle \mathbf {n} |_{t=1}=\{-{\frac {22}{\sqrt {14^{3}}}};{\frac {2}{\sqrt {14}}}-{\frac {2\cdot 22}{\sqrt {14^{3}}}};{\frac {6}{\sqrt {14}}}-{\frac {3\cdot 22}{\sqrt {14^{3}}}}\},}
n
|
t
=
1
=
{
−
22
2744
;
2
14
−
44
2744
;
6
14
−
66
2744
}
,
{\displaystyle \mathbf {n} |_{t=1}=\{-{\frac {22}{\sqrt {2744}}};{\frac {2}{\sqrt {14}}}-{\frac {44}{\sqrt {2744}}};{\frac {6}{\sqrt {14}}}-{\frac {66}{\sqrt {2744}}}\},}
n
|
t
=
1
=
{
−
22
52.38320341
;
2
3.741657387
−
44
52.38320341
;
6
3.741657387
−
66
52.38320341
}
,
{\displaystyle \mathbf {n} |_{t=1}=\{-{\frac {22}{52.38320341}};{\frac {2}{3.741657387}}-{\frac {44}{52.38320341}};{\frac {6}{3.741657387}}-{\frac {66}{52.38320341}}\},}
n
|
t
=
1
=
{
−
0.419981951
;
0.534522483
−
0.839963903
;
1.603567451
−
1.259945855
}
,
{\displaystyle \mathbf {n} |_{t=1}=\{-0.419981951;0.534522483-0.839963903;1.603567451-1.259945855\},}
n
|
t
=
1
=
{
−
0.419981951
;
−
0.305441419
;
0.343621596
}
;
{\displaystyle \mathbf {n} |_{t=1}=\{-0.419981951;-0.305441419;0.343621596\};}
normalizuotas kreivės normalės vektorius yra šis:
n
∘
|
t
=
1
=
n
|
t
=
1
(
−
0.419981951
)
2
+
(
−
0.305441419
)
2
+
(
0.343621596
)
2
,
{\displaystyle \mathbf {n} ^{\circ }|_{t=1}={\frac {\mathbf {n} |_{t=1}}{\sqrt {(-0.419981951)^{2}+(-0.305441419)^{2}+(0.343621596)^{2}}}},}
n
∘
|
t
=
1
=
n
|
t
=
1
0.17638484
+
0.093294461
+
0.118075802
=
n
|
t
=
1
0.387755103
=
n
|
t
=
1
0.62269985
,
{\displaystyle \mathbf {n} ^{\circ }|_{t=1}={\frac {\mathbf {n} |_{t=1}}{\sqrt {0.17638484+0.093294461+0.118075802}}}={\frac {\mathbf {n} |_{t=1}}{\sqrt {0.387755103}}}={\frac {\mathbf {n} |_{t=1}}{0.62269985}},}
n
∘
|
t
=
1
=
{
−
0.419981951
0.62269985
;
−
0.305441419
0.62269985
;
0.343621596
0.62269985
}
=
{
−
0.674453271
;
−
0.49051147
;
0.551825403
}
.
{\displaystyle \mathbf {n} ^{\circ }|_{t=1}=\{{\frac {-0.419981951}{0.62269985}};{\frac {-0.305441419}{0.62269985}};{\frac {0.343621596}{0.62269985}}\}=\{-0.674453271;-0.49051147;0.551825403\}.}
d) Kampas
α
{\displaystyle \alpha }
tarp kreivės liestinės normalizuoto vektoriaus ir kreivės normalės vektoriaus yra toks:
cos
α
=
a
∘
|
t
=
1
⋅
n
∘
|
t
=
1
‖
a
∘
|
t
=
1
‖
⋅
‖
n
∘
|
t
=
1
‖
=
{\displaystyle \cos \alpha ={\frac {\mathbf {a} ^{\circ }|_{t=1}\cdot \mathbf {n} ^{\circ }|_{t=1}}{\|\mathbf {a} ^{\circ }|_{t=1}\|\cdot \|\mathbf {n} ^{\circ }|_{t=1}\|}}=}
=
0.267261241
⋅
(
−
0.674453271
)
+
0.534522483
⋅
(
−
0.49051147
)
+
0.801783725
⋅
0.551825403
1
⋅
1
=
{\displaystyle ={\frac {0.267261241\cdot (-0.674453271)+0.534522483\cdot (-0.49051147)+0.801783725\cdot 0.551825403}{{\sqrt {1}}\cdot {\sqrt {1}}}}=}
=
−
0.180255218
−
0.262189408
+
0.442444627
=
−
0.442444626
+
0.442444627
=
0.000000001
=
0
;
{\displaystyle =-0.180255218-0.262189408+0.442444627=-0.442444626+0.442444627=0.000000001=0;}
α
=
arccos
(
0
)
=
π
2
=
1.570796327
{\displaystyle \alpha =\arccos(0)={\frac {\pi }{2}}=1.570796327}
arba 90 laipsnių.
e) Kreivės liestinės vektorius yra
a
=
{
1
;
2
t
;
3
t
2
}
;
{\displaystyle \mathbf {a} =\{1;2t;3t^{2}\};}
kreivės liestinės vektorius, kai
t
=
1
{\displaystyle t=1}
yra:
a
|
t
=
1
=
{
1
;
2
;
3
}
;
{\displaystyle \mathbf {a} |_{t=1}=\{1;2;3\};}
kreivės liestinės vektoriaus ortas, kai
t
=
1
{\displaystyle t=1}
, yra:
a
∘
|
t
=
1
=
{
1
1
+
4
+
9
;
2
1
+
4
+
9
;
3
1
+
4
+
9
}
,
{\displaystyle \mathbf {a} ^{\circ }|_{t=1}=\{{\frac {1}{\sqrt {1+4+9}}};{\frac {2}{\sqrt {1+4+9}}};{\frac {3}{\sqrt {1+4+9}}}\},}
a
∘
|
t
=
1
=
{
1
14
;
2
14
;
3
14
}
=
{
0.267261241
;
0.534522483
;
0.801783725
}
.
{\displaystyle \mathbf {a} ^{\circ }|_{t=1}=\{{\frac {1}{\sqrt {14}}};{\frac {2}{\sqrt {14}}};{\frac {3}{\sqrt {14}}}\}=\{0.267261241;0.534522483;0.801783725\}.}
kreivės pseudonormalės vektorius yra:
p
=
{
1
−
ϕ
′
(
t
)
;
1
ψ
′
(
t
)
;
1
ω
′
(
t
)
=
{
−
1
;
1
2
t
;
1
3
t
}
;
{\displaystyle \mathbf {p} =\{{\frac {1}{-\phi '(t)}};{\frac {1}{\psi '(t)}};{\frac {1}{\omega '(t)}}=\{-1;{\frac {1}{2t}};{\frac {1}{3t}}\};}
kreivės normalės vektorius yra:
n
=
{
2
−
3
ϕ
′
(
t
)
;
1
3
ψ
′
(
t
)
;
1
3
ω
′
(
t
)
=
{
−
2
3
;
1
6
t
;
1
9
t
2
}
;
{\displaystyle \mathbf {n} =\{{\frac {2}{-3\phi '(t)}};{\frac {1}{3\psi '(t)}};{\frac {1}{3\omega '(t)}}=\{-{\frac {2}{3}};{\frac {1}{6t}};{\frac {1}{9t^{2}}}\};}
kreivės pseudonormalės vektorius, kai
t
=
1
{\displaystyle t=1}
, yra:
p
|
t
=
1
=
{
−
1
;
1
2
;
1
3
}
;
{\displaystyle \mathbf {p} |_{t=1}=\{-1;{\frac {1}{2}};{\frac {1}{3}}\};}
kreivės normalės vektorius, kai
t
=
1
{\displaystyle t=1}
, yra:
n
|
t
=
1
=
{
−
2
3
;
1
6
;
1
9
}
;
{\displaystyle \mathbf {n} |_{t=1}=\{-{\frac {2}{3}};{\frac {1}{6}};{\frac {1}{9}}\};}
kreivės pseudonormalės normalizuotas vektorius, kai
t
=
1
{\displaystyle t=1}
yra:
p
∘
|
t
=
1
=
{
−
1
(
−
1
)
2
+
(
1
2
)
2
+
(
1
3
)
2
;
1
2
(
−
1
)
2
+
(
1
2
)
2
+
(
1
3
)
2
;
1
3
(
−
1
)
2
+
(
1
2
)
2
+
(
1
3
)
2
}
,
{\displaystyle \mathbf {p} ^{\circ }|_{t=1}=\{{\frac {-1}{\sqrt {(-1)^{2}+({1 \over 2})^{2}+({1 \over 3})^{2}}}};{\frac {\frac {1}{2}}{\sqrt {(-1)^{2}+({1 \over 2})^{2}+({1 \over 3})^{2}}}};{\frac {\frac {1}{3}}{\sqrt {(-1)^{2}+({1 \over 2})^{2}+({1 \over 3})^{2}}}}\},}
p
∘
|
t
=
1
=
{
−
1
1
+
1
4
+
1
9
;
1
2
1
+
1
4
+
1
9
;
1
3
1
+
1
4
+
1
9
}
=
{
−
1
36
+
9
+
4
36
;
1
2
36
+
9
+
4
36
;
1
3
36
+
9
+
4
36
}
,
{\displaystyle \mathbf {p} ^{\circ }|_{t=1}=\{{\frac {-1}{\sqrt {1+{1 \over 4}+{1 \over 9}}}};{\frac {\frac {1}{2}}{\sqrt {1+{1 \over 4}+{1 \over 9}}}};{\frac {\frac {1}{3}}{\sqrt {1+{1 \over 4}+{1 \over 9}}}}\}=\{{\frac {-1}{\sqrt {36+9+4 \over 36}}};{\frac {\frac {1}{2}}{\sqrt {36+9+4 \over 36}}};{\frac {\frac {1}{3}}{\sqrt {36+9+4 \over 36}}}\},}
p
∘
|
t
=
1
=
{
−
1
49
36
;
1
2
49
36
;
1
3
49
36
}
=
{
−
1
7
6
;
1
2
7
6
;
1
3
7
6
}
,
{\displaystyle \mathbf {p} ^{\circ }|_{t=1}=\{{\frac {-1}{\sqrt {49 \over 36}}};{\frac {\frac {1}{2}}{\sqrt {49 \over 36}}};{\frac {\frac {1}{3}}{\sqrt {49 \over 36}}}\}=\{{\frac {-1}{7 \over 6}};{\frac {\frac {1}{2}}{7 \over 6}};{\frac {\frac {1}{3}}{7 \over 6}}\},}
p
∘
|
t
=
1
=
{
−
6
7
;
6
14
;
6
21
}
=
{
−
0.857142857
;
0.428571428
;
0.285714285
}
;
{\displaystyle \mathbf {p} ^{\circ }|_{t=1}=\{{\frac {-6}{7}};{\frac {6}{14}};{\frac {6}{21}}\}=\{-0.857142857;0.428571428;0.285714285\};}
kreivės normalės normalizuotas vektorius, kai
t
=
1
{\displaystyle t=1}
yra:
n
∘
|
t
=
1
=
{
−
2
3
(
−
2
3
)
2
+
(
1
6
)
2
+
(
1
9
)
2
;
1
6
(
−
2
3
)
2
+
(
1
6
)
2
+
(
1
9
)
2
;
1
9
(
−
2
3
)
2
+
(
1
6
)
2
+
(
1
9
)
2
}
,
{\displaystyle \mathbf {n} ^{\circ }|_{t=1}=\{{\frac {-{\frac {2}{3}}}{\sqrt {(-{\frac {2}{3}})^{2}+({1 \over 6})^{2}+({1 \over 9})^{2}}}};{\frac {\frac {1}{6}}{\sqrt {(-{\frac {2}{3}})^{2}+({1 \over 6})^{2}+({1 \over 9})^{2}}}};{\frac {\frac {1}{9}}{\sqrt {(-{\frac {2}{3}})^{2}+({1 \over 6})^{2}+({1 \over 9})^{2}}}}\},}
n
∘
|
t
=
1
=
{
−
2
3
4
9
+
1
36
+
1
81
;
1
6
4
9
+
1
36
+
1
81
;
1
9
4
9
+
1
36
+
1
81
}
=
{
−
2
3
4
⋅
36
+
9
+
4
324
;
1
2
144
+
9
+
4
324
;
1
3
144
+
9
+
4
324
}
,
{\displaystyle \mathbf {n} ^{\circ }|_{t=1}=\{{\frac {-{\frac {2}{3}}}{\sqrt {{4 \over 9}+{1 \over 36}+{1 \over 81}}}};{\frac {\frac {1}{6}}{\sqrt {{4 \over 9}+{1 \over 36}+{1 \over 81}}}};{\frac {\frac {1}{9}}{\sqrt {{4 \over 9}+{1 \over 36}+{1 \over 81}}}}\}=\{{\frac {-{\frac {2}{3}}}{\sqrt {4\cdot 36+9+4 \over 324}}};{\frac {\frac {1}{2}}{\sqrt {144+9+4 \over 324}}};{\frac {\frac {1}{3}}{\sqrt {144+9+4 \over 324}}}\},}
n
∘
|
t
=
1
=
{
−
2
3
157
324
;
1
6
157
324
;
1
9
157
324
}
=
{
−
2
⋅
18
3
⋅
157
;
18
6
⋅
157
;
18
9
⋅
157
}
,
{\displaystyle \mathbf {n} ^{\circ }|_{t=1}=\{{\frac {-{\frac {2}{3}}}{\sqrt {157 \over 324}}};{\frac {\frac {1}{6}}{\sqrt {157 \over 324}}};{\frac {\frac {1}{9}}{\sqrt {157 \over 324}}}\}=\{-{2\cdot 18 \over 3\cdot {\sqrt {157}}};{\frac {18}{6\cdot {\sqrt {157}}}};{\frac {18}{9\cdot {\sqrt {157}}}}\},}
n
∘
|
t
=
1
=
{
−
12
157
;
3
157
;
2
157
}
=
{
−
0.957704261
;
0.239426065
;
0.159617376
}
;
{\displaystyle \mathbf {n} ^{\circ }|_{t=1}=\{{\frac {-12}{\sqrt {157}}};{\frac {3}{\sqrt {157}}};{\frac {2}{\sqrt {157}}}\}=\{-0.957704261;0.239426065;0.159617376\};}
kampas tarp pseudonormalės ir liestinės vektorių yra:
cos
α
=
0.267261241
⋅
(
−
0.857142857
)
+
0.534522483
⋅
0.428571428
+
0.801783725
⋅
0.285714285
=
{\displaystyle \cos \alpha =0.267261241\cdot (-0.857142857)+0.534522483\cdot 0.428571428+0.801783725\cdot 0.285714285=}
=
−
0.229081063
+
0.229081063
+
0.229081063
=
0.229081063
;
{\displaystyle =-0.229081063+0.229081063+0.229081063=0.229081063;}
α
=
arccos
(
0.229081063
)
=
1.33966279
{\displaystyle \alpha =\arccos(0.229081063)=1.33966279}
arba 76.75702383 laipsniai;
kampas tarp liestinės ir normalės vektoriaus yra:
cos
θ
=
0.267261241
⋅
(
−
0.957704261
)
+
0.534522483
⋅
0.239426065
+
0.801783725
⋅
0.159617376
=
{\displaystyle \cos \theta =0.267261241\cdot (-0.957704261)+0.534522483\cdot 0.239426065+0.801783725\cdot 0.159617376=}
=
−
0.255957229
+
0.127978614
+
0.127978614
=
−
0.255957229
+
0.255957229
=
0
;
{\displaystyle =-0.255957229+0.127978614+0.127978614=-0.255957229+0.255957229=0;}
θ
=
arccos
(
0
)
=
π
2
{\displaystyle \theta =\arccos(0)={\frac {\pi }{2}}}
arba 90 laipsnių.
f) Kampas tarp pseudonormalės ir liestinės yra
α
=
84.44409162
{\displaystyle \alpha =84.44409162}
laipsniai;
kreivės normalės vektorius yra:
n
=
{
2
−
3
ϕ
′
(
t
)
;
1
3
ψ
′
(
t
)
;
1
3
ω
′
(
t
)
=
{
−
2
3
;
1
6
t
;
1
9
t
2
}
;
{\displaystyle \mathbf {n} =\{{\frac {2}{-3\phi '(t)}};{\frac {1}{3\psi '(t)}};{\frac {1}{3\omega '(t)}}=\{-{\frac {2}{3}};{\frac {1}{6t}};{\frac {1}{9t^{2}}}\};}
kreivės normalės vektorius, kai
t
=
5
{\displaystyle t=5}
yra:
n
=
{
−
2
3
;
1
6
⋅
5
;
1
9
⋅
5
2
}
=
{
−
2
3
;
1
30
;
1
225
}
;
{\displaystyle \mathbf {n} =\{-{\frac {2}{3}};{\frac {1}{6\cdot 5}};{\frac {1}{9\cdot 5^{2}}}\}=\{-{\frac {2}{3}};{\frac {1}{30}};{\frac {1}{225}}\};}
kreivės liestinės vektorius yra
a
=
{
1
;
2
t
;
3
t
2
}
;
{\displaystyle \mathbf {a} =\{1;2t;3t^{2}\};}
kreivės liestinės vektorius, kai
t
=
5
{\displaystyle t=5}
yra
a
=
{
1
;
2
⋅
5
;
3
⋅
5
2
}
=
{
1
;
10
;
75
}
;
{\displaystyle \mathbf {a} =\{1;2\cdot 5;3\cdot 5^{2}\}=\{1;10;75\};}
Jeigu vektorių skaliarinė sandauga lygi nuliui, tai vektoriai yra statmeni vienas kitam:
a
⋅
n
=
1
⋅
(
−
2
3
)
+
10
⋅
1
30
+
75
⋅
1
225
=
−
2
3
+
1
3
+
1
3
=
0.
{\displaystyle \mathbf {a} \cdot \mathbf {n} =1\cdot (-{\frac {2}{3}})+10\cdot {\frac {1}{30}}+75\cdot {\frac {1}{225}}=-{\frac {2}{3}}+{\frac {1}{3}}+{\frac {1}{3}}=0.}
Duota kreivė užrašyta parametrinėmis lygtimis
x
=
ϕ
(
t
)
=
t
2
,
y
=
ψ
(
t
)
=
t
3
,
z
=
ω
(
t
)
=
t
4
.
{\displaystyle x=\phi (t)=t^{2},\quad y=\psi (t)=t^{3},\quad z=\omega (t)=t^{4}.}
Rasti:
a) kreivės liestinės vektorių;
b) normalizuotą kreivės liestinės vektorių (ortą);
c) kreivės normalės vektorių iš normalizuoto liestinės vektoriaus;
d) kampą tarp liestinės orto (vektoriaus) ir normalės vektoriaus, kai parametro t reikšmė lygi 1;
e) normalizuotą liestinės vektorių naudojantis formule
b
=
{
1
;
ψ
′
(
t
)
ϕ
′
(
t
)
;
ω
′
(
t
)
ϕ
′
(
t
)
}
{\displaystyle \mathbf {b} =\{1;{\frac {\psi '(t)}{\phi '(t)}};{\frac {\omega '(t)}{\phi '(t)}}\}}
ir palyginti su normalizuotu liestinės vektoriu
a
=
{
ϕ
′
(
t
)
;
ψ
′
(
t
)
;
ω
′
(
t
)
}
,
{\displaystyle \mathbf {a} =\{\phi '(t);\psi '(t);\omega '(t)\},}
kai
t
=
1
{\displaystyle t=1}
ir kai
t
=
5
{\displaystyle t=5}
;
f) tikrąjį kreivės normalės vektorių naudojantis formule
n
=
{
2
−
3
ϕ
′
(
t
)
;
1
3
ψ
′
(
t
)
;
1
3
ω
′
(
t
)
}
,
{\displaystyle \mathbf {n} =\{{\frac {2}{-3\phi '(t)}};{\frac {1}{3\psi '(t)}};{\frac {1}{3\omega '(t)}}\},}
kai
t
=
1
{\displaystyle t=1}
ir kai
t
=
5
{\displaystyle t=5}
; apskaičiuoti kampą tarp šio normalės vektoriaus ir tarp liestinės vektoriaus, kai
t
=
1
{\displaystyle t=1}
ir kai
t
=
5
{\displaystyle t=5}
;
g) tikrąjį kreivės normalės vektorių naudojantis formule
n
=
{
2
−
3
ϕ
′
(
t
)
ϕ
′
(
t
)
;
1
3
ψ
′
(
t
)
ϕ
′
(
t
)
;
1
3
ω
′
(
t
)
ϕ
′
(
t
)
}
=
{
−
2
3
;
ϕ
′
(
t
)
3
ψ
′
(
t
)
;
ϕ
′
(
t
)
3
ω
′
(
t
)
}
,
{\displaystyle \mathbf {n} =\{{\frac {2}{-3{\phi '(t) \over \phi '(t)}}};{\frac {1}{3{\psi '(t) \over \phi '(t)}}};{\frac {1}{3{\omega '(t) \over \phi '(t)}}}\}=\{-{\frac {2}{3}};{\frac {\phi '(t)}{3\psi '(t)}};{\frac {\phi '(t)}{3\omega '(t)}}\},}
kai
t
=
1
{\displaystyle t=1}
ir kai
t
=
5
{\displaystyle t=5}
; apskaičiuoti kampą tarp šio normalės vektoriaus ir tarp liestinės vektoriaus, kai
t
=
1
{\displaystyle t=1}
ir kai
t
=
5
{\displaystyle t=5}
.
Sprendimas .
a) Kreivės liestinės vektorius yra
a
=
{
(
t
2
)
′
;
(
t
3
)
′
;
(
t
4
)
′
}
=
{
2
t
;
3
t
2
;
4
t
3
}
.
{\displaystyle \mathbf {a} =\{(t^{2})';(t^{3})';(t^{4})'\}=\{2t;3t^{2};4t^{3}\}.}
b) Vektoriaus
a
{\displaystyle \mathbf {a} }
ilgis yra:
‖
a
‖
=
(
2
t
)
2
+
(
3
t
2
)
2
+
(
4
t
3
)
2
=
4
t
2
+
9
t
4
+
16
t
6
.
{\displaystyle \|\mathbf {a} \|={\sqrt {(2t)^{2}+(3t^{2})^{2}+(4t^{3})^{2}}}={\sqrt {4t^{2}+9t^{4}+16t^{6}}}.}
Kreivės liestinės normalizuotas vektorius yra šis:
a
∘
=
a
‖
a
‖
=
{
2
t
4
t
2
+
9
t
4
+
16
t
6
;
3
t
2
4
t
2
+
9
t
4
+
16
t
6
;
4
t
3
4
t
2
+
9
t
4
+
16
t
6
}
;
{\displaystyle \mathbf {a} ^{\circ }={\frac {\mathbf {a} }{\|\mathbf {a} \|}}=\{{\frac {2t}{\sqrt {4t^{2}+9t^{4}+16t^{6}}}};{\frac {3t^{2}}{\sqrt {4t^{2}+9t^{4}+16t^{6}}}};{\frac {4t^{3}}{\sqrt {4t^{2}+9t^{4}+16t^{6}}}}\};}
jo reikšmė, kai
t
=
1
{\displaystyle t=1}
yra
a
∘
|
t
=
1
=
{
2
4
+
9
+
16
;
3
4
+
9
+
16
;
4
4
+
9
+
16
}
,
{\displaystyle \mathbf {a} ^{\circ }|_{t=1}=\{{\frac {2}{\sqrt {4+9+16}}};{\frac {3}{\sqrt {4+9+16}}};{\frac {4}{\sqrt {4+9+16}}}\},}
a
∘
|
t
=
1
=
{
2
29
;
3
29
;
4
29
}
=
{
0.371390676
;
0.557086014
;
0.742781352
}
.
{\displaystyle \mathbf {a} ^{\circ }|_{t=1}=\{{\frac {2}{\sqrt {29}}};{\frac {3}{\sqrt {29}}};{\frac {4}{\sqrt {29}}}\}=\{0.371390676;0.557086014;0.742781352\}.}
c) Kreivės normalės vektorius yra liestinės vektoriaus orto išvestinė:
n
=
(
a
∘
)
′
=
{
(
2
t
4
t
2
+
9
t
4
+
16
t
6
)
′
;
(
3
t
2
4
t
2
+
9
t
4
+
16
t
6
)
′
;
(
4
t
3
4
t
2
+
9
t
4
+
16
t
6
)
′
}
,
{\displaystyle \mathbf {n} =(\mathbf {a} ^{\circ })'=\{({\frac {2t}{\sqrt {4t^{2}+9t^{4}+16t^{6}}}})';({\frac {3t^{2}}{\sqrt {4t^{2}+9t^{4}+16t^{6}}}})';({\frac {4t^{3}}{\sqrt {4t^{2}+9t^{4}+16t^{6}}}})'\},}
n
=
{
(
2
t
)
′
4
t
2
+
9
t
4
+
16
t
6
−
2
t
(
4
t
2
+
9
t
4
+
16
t
6
)
′
(
4
t
2
+
9
t
4
+
16
t
6
)
2
;
(
3
t
2
)
′
4
t
2
+
9
t
4
+
16
t
6
−
3
t
2
(
4
t
2
+
9
t
4
+
16
t
6
)
′
(
4
t
2
+
9
t
4
+
16
t
6
)
2
;
(
4
t
3
)
′
4
t
2
+
9
t
4
+
16
t
6
−
4
t
3
(
4
t
2
+
9
t
4
+
16
t
6
)
′
(
4
t
2
+
9
t
4
+
16
t
6
)
2
}
,
{\displaystyle \mathbf {n} =\{{\frac {(2t)'{\sqrt {4t^{2}+9t^{4}+16t^{6}}}-2t({\sqrt {4t^{2}+9t^{4}+16t^{6}}})'}{({\sqrt {4t^{2}+9t^{4}+16t^{6}}})^{2}}};{\frac {(3t^{2})'{\sqrt {4t^{2}+9t^{4}+16t^{6}}}-3t^{2}({\sqrt {4t^{2}+9t^{4}+16t^{6}}})'}{({\sqrt {4t^{2}+9t^{4}+16t^{6}}})^{2}}};{\frac {(4t^{3})'{\sqrt {4t^{2}+9t^{4}+16t^{6}}}-4t^{3}({\sqrt {4t^{2}+9t^{4}+16t^{6}}})'}{({\sqrt {4t^{2}+9t^{4}+16t^{6}}})^{2}}}\},}
n
=
{
2
4
t
2
+
9
t
4
+
16
t
6
−
2
t
⋅
(
4
t
2
+
9
t
4
+
16
t
6
)
′
2
4
t
2
+
9
t
4
+
16
t
6
4
t
2
+
9
t
4
+
16
t
6
;
6
t
4
t
2
+
9
t
4
+
16
t
6
−
3
t
2
⋅
(
4
t
2
+
9
t
4
+
16
t
6
)
′
2
4
t
2
+
9
t
4
+
16
t
6
4
t
2
+
9
t
4
+
16
t
6
;
12
t
2
4
t
2
+
9
t
4
+
16
t
6
−
4
t
3
⋅
(
4
t
2
+
9
t
4
+
16
t
6
)
′
2
4
t
2
+
9
t
4
+
16
t
6
4
t
2
+
9
t
4
+
16
t
6
}
,
{\displaystyle \mathbf {n} =\{{\frac {2{\sqrt {4t^{2}+9t^{4}+16t^{6}}}-2t\cdot {\frac {(4t^{2}+9t^{4}+16t^{6})'}{2{\sqrt {4t^{2}+9t^{4}+16t^{6}}}}}}{4t^{2}+9t^{4}+16t^{6}}};{\frac {6t{\sqrt {4t^{2}+9t^{4}+16t^{6}}}-3t^{2}\cdot {\frac {(4t^{2}+9t^{4}+16t^{6})'}{2{\sqrt {4t^{2}+9t^{4}+16t^{6}}}}}}{4t^{2}+9t^{4}+16t^{6}}};{\frac {12t^{2}{\sqrt {4t^{2}+9t^{4}+16t^{6}}}-4t^{3}\cdot {\frac {(4t^{2}+9t^{4}+16t^{6})'}{2{\sqrt {4t^{2}+9t^{4}+16t^{6}}}}}}{4t^{2}+9t^{4}+16t^{6}}}\},}
n
=
{
2
4
t
2
+
9
t
4
+
16
t
6
−
2
t
⋅
8
t
+
36
t
3
+
96
t
5
2
4
t
2
+
9
t
4
+
16
t
6
4
t
2
+
9
t
4
+
16
t
6
;
6
t
4
t
2
+
9
t
4
+
16
t
6
−
3
t
2
⋅
8
t
+
36
t
3
+
96
t
5
2
4
t
2
+
9
t
4
+
16
t
6
4
t
2
+
9
t
4
+
16
t
6
;
12
t
2
4
t
2
+
9
t
4
+
16
t
6
−
4
t
3
⋅
8
t
+
36
t
3
+
96
t
5
2
4
t
2
+
9
t
4
+
16
t
6
4
t
2
+
9
t
4
+
16
t
6
}
,
{\displaystyle \mathbf {n} =\{{\frac {2{\sqrt {4t^{2}+9t^{4}+16t^{6}}}-2t\cdot {\frac {8t+36t^{3}+96t^{5}}{2{\sqrt {4t^{2}+9t^{4}+16t^{6}}}}}}{4t^{2}+9t^{4}+16t^{6}}};{\frac {6t{\sqrt {4t^{2}+9t^{4}+16t^{6}}}-3t^{2}\cdot {\frac {8t+36t^{3}+96t^{5}}{2{\sqrt {4t^{2}+9t^{4}+16t^{6}}}}}}{4t^{2}+9t^{4}+16t^{6}}};{\frac {12t^{2}{\sqrt {4t^{2}+9t^{4}+16t^{6}}}-4t^{3}\cdot {\frac {8t+36t^{3}+96t^{5}}{2{\sqrt {4t^{2}+9t^{4}+16t^{6}}}}}}{4t^{2}+9t^{4}+16t^{6}}}\},}
n
=
{
2
4
t
2
+
9
t
4
+
16
t
6
−
2
t
⋅
8
t
+
36
t
3
+
96
t
5
2
(
4
t
2
+
9
t
4
+
16
t
6
)
3
;
6
t
4
t
2
+
9
t
4
+
16
t
6
−
3
t
2
⋅
8
t
+
36
t
3
+
96
t
5
2
(
4
t
2
+
9
t
4
+
16
t
6
)
3
;
12
t
2
4
t
2
+
9
t
4
+
16
t
6
−
4
t
3
⋅
8
t
+
36
t
3
+
96
t
5
2
(
4
t
2
+
9
t
4
+
16
t
6
)
3
}
,
{\displaystyle \mathbf {n} =\{{\frac {2}{\sqrt {4t^{2}+9t^{4}+16t^{6}}}}-2t\cdot {\frac {8t+36t^{3}+96t^{5}}{2{\sqrt {(4t^{2}+9t^{4}+16t^{6})^{3}}}}};{\frac {6t}{\sqrt {4t^{2}+9t^{4}+16t^{6}}}}-3t^{2}\cdot {\frac {8t+36t^{3}+96t^{5}}{2{\sqrt {(4t^{2}+9t^{4}+16t^{6})^{3}}}}};{\frac {12t^{2}}{\sqrt {4t^{2}+9t^{4}+16t^{6}}}}-4t^{3}\cdot {\frac {8t+36t^{3}+96t^{5}}{2{\sqrt {(4t^{2}+9t^{4}+16t^{6})^{3}}}}}\},}
n
=
{
2
4
t
2
+
9
t
4
+
16
t
6
−
2
t
(
4
t
+
18
t
3
+
48
t
5
)
(
4
t
2
+
9
t
4
+
16
t
6
)
3
;
6
t
4
t
2
+
9
t
4
+
16
t
6
−
3
t
2
(
4
t
+
18
t
3
+
48
t
5
)
(
4
t
2
+
9
t
4
+
16
t
6
)
3
;
12
t
2
4
t
2
+
9
t
4
+
16
t
6
−
4
t
3
(
4
t
+
18
t
3
+
48
t
5
)
(
4
t
2
+
9
t
4
+
16
t
6
)
3
}
;
{\displaystyle \mathbf {n} =\{{\frac {2}{\sqrt {4t^{2}+9t^{4}+16t^{6}}}}-{\frac {2t(4t+18t^{3}+48t^{5})}{\sqrt {(4t^{2}+9t^{4}+16t^{6})^{3}}}};{\frac {6t}{\sqrt {4t^{2}+9t^{4}+16t^{6}}}}-{\frac {3t^{2}(4t+18t^{3}+48t^{5})}{\sqrt {(4t^{2}+9t^{4}+16t^{6})^{3}}}};{\frac {12t^{2}}{\sqrt {4t^{2}+9t^{4}+16t^{6}}}}-{\frac {4t^{3}(4t+18t^{3}+48t^{5})}{\sqrt {(4t^{2}+9t^{4}+16t^{6})^{3}}}}\};}
su reikšme
t
=
1
{\displaystyle t=1}
kreivės normalės vektorius statmenas liestienei yra:
n
|
t
=
1
=
{
2
4
+
9
+
16
−
2
(
4
+
18
+
48
)
(
4
+
9
+
16
)
3
;
6
4
+
9
+
16
−
3
(
4
+
18
+
48
)
(
4
+
9
+
16
)
3
;
12
4
+
9
+
16
−
4
(
4
+
18
+
48
)
(
4
+
9
+
16
)
3
}
;
{\displaystyle \mathbf {n} |_{t=1}=\{{\frac {2}{\sqrt {4+9+16}}}-{\frac {2(4+18+48)}{\sqrt {(4+9+16)^{3}}}};{\frac {6}{\sqrt {4+9+16}}}-{\frac {3(4+18+48)}{\sqrt {(4+9+16)^{3}}}};{\frac {12}{\sqrt {4+9+16}}}-{\frac {4(4+18+48)}{\sqrt {(4+9+16)^{3}}}}\};}
n
|
t
=
1
=
{
2
29
−
2
⋅
70
29
3
;
6
29
−
3
⋅
70
29
3
;
12
29
−
4
⋅
70
29
3
}
;
{\displaystyle \mathbf {n} |_{t=1}=\{{\frac {2}{\sqrt {29}}}-{\frac {2\cdot 70}{\sqrt {29^{3}}}};{\frac {6}{\sqrt {29}}}-{\frac {3\cdot 70}{\sqrt {29^{3}}}};{\frac {12}{\sqrt {29}}}-{\frac {4\cdot 70}{\sqrt {29^{3}}}}\};}
n
|
t
=
1
=
{
2
29
−
140
24389
;
6
29
−
210
24389
;
12
29
−
280
24389
}
;
{\displaystyle \mathbf {n} |_{t=1}=\{{\frac {2}{\sqrt {29}}}-{\frac {140}{\sqrt {24389}}};{\frac {6}{\sqrt {29}}}-{\frac {210}{\sqrt {24389}}};{\frac {12}{\sqrt {29}}}-{\frac {280}{\sqrt {24389}}}\};}
n
|
t
=
1
=
{
−
0.525069576
;
−
0.23051835
;
0.435423551
}
;
{\displaystyle \mathbf {n} |_{t=1}=\{-0.525069576;-0.23051835;0.435423551\};}
normalizuotas kreivės normalės vektorius yra šis:
n
∘
|
t
=
1
=
n
|
t
=
1
(
−
0.525069576
)
2
+
(
−
0.23051835
)
2
+
(
0.435423551
)
2
=
n
|
t
=
1
0.518430438
=
n
|
t
=
1
0.720021137
,
{\displaystyle \mathbf {n} ^{\circ }|_{t=1}={\frac {\mathbf {n} |_{t=1}}{\sqrt {(-0.525069576)^{2}+(-0.23051835)^{2}+(0.435423551)^{2}}}}={\frac {\mathbf {n} |_{t=1}}{\sqrt {0.518430438}}}={\frac {\mathbf {n} |_{t=1}}{0.720021137}},}
n
∘
|
t
=
1
=
{
−
0.525069576
0.720021137
;
−
0.23051835
0.720021137
;
0.435423551
0.720021137
}
=
{
−
0.729241891
;
−
0.320154976
;
0.604737178
}
.
{\displaystyle \mathbf {n} ^{\circ }|_{t=1}=\{{\frac {-0.525069576}{0.720021137}};{\frac {-0.23051835}{0.720021137}};{\frac {0.435423551}{0.720021137}}\}=\{-0.729241891;-0.320154976;0.604737178\}.}
d) Kampas
α
{\displaystyle \alpha }
tarp kreivės liestinės normalizuoto vektoriaus ir kreivės normalės vektoriaus yra toks:
cos
α
=
a
∘
|
t
=
1
⋅
n
∘
|
t
=
1
‖
a
∘
|
t
=
1
‖
⋅
‖
n
∘
|
t
=
1
‖
=
{\displaystyle \cos \alpha ={\frac {\mathbf {a} ^{\circ }|_{t=1}\cdot \mathbf {n} ^{\circ }|_{t=1}}{\|\mathbf {a} ^{\circ }|_{t=1}\|\cdot \|\mathbf {n} ^{\circ }|_{t=1}\|}}=}
=
0.371390676
⋅
(
−
0.729241891
)
+
0.557086014
⋅
(
−
0.320154976
)
+
0.742781352
⋅
0.604737178
1
⋅
1
=
{\displaystyle ={\frac {0.371390676\cdot (-0.729241891)+0.557086014\cdot (-0.320154976)+0.742781352\cdot 0.604737178}{{\sqrt {1}}\cdot {\sqrt {1}}}}=}
=
−
0.270833638
−
0.178353859
+
0.449187498
=
−
0.449187497
+
0.449187498
=
0.000000001
=
0
;
{\displaystyle =-0.270833638-0.178353859+0.449187498=-0.449187497+0.449187498=0.000000001=0;}
α
=
arccos
(
0
)
=
π
2
=
1.570796327
{\displaystyle \alpha =\arccos(0)={\frac {\pi }{2}}=1.570796327}
arba 90 laipsnių.
e) Kai
t
=
1
{\displaystyle t=1}
normalizuotas liestinės vektorius yra:
a
∘
|
t
=
1
=
{
2
29
;
3
29
;
4
29
}
=
{
0.371390676
;
0.557086014
;
0.742781352
}
;
{\displaystyle \mathbf {a} ^{\circ }|_{t=1}=\{{\frac {2}{\sqrt {29}}};{\frac {3}{\sqrt {29}}};{\frac {4}{\sqrt {29}}}\}=\{0.371390676;0.557086014;0.742781352\};}
kai
t
=
5
{\displaystyle t=5}
liestinės vektorius yra:
a
|
t
=
5
=
{
2
⋅
5
;
3
⋅
5
2
;
4
⋅
5
3
}
=
{
10
;
75
;
500
}
;
{\displaystyle \mathbf {a} |_{t=5}=\{2\cdot 5;3\cdot 5^{2};4\cdot 5^{3}\}=\{10;75;500\};}
kai
t
=
5
{\displaystyle t=5}
normalizuotas liestinės vektorius yra:
a
∘
|
t
=
5
=
{
10
10
2
+
75
2
+
500
2
;
75
10
2
+
75
2
+
500
2
;
500
10
2
+
75
2
+
500
2
}
,
{\displaystyle \mathbf {a} ^{\circ }|_{t=5}=\{{\frac {10}{\sqrt {10^{2}+75^{2}+500^{2}}}};{\frac {75}{\sqrt {10^{2}+75^{2}+500^{2}}}};{\frac {500}{\sqrt {10^{2}+75^{2}+500^{2}}}}\},}
a
∘
|
t
=
5
=
{
10
100
+
5625
+
250000
;
75
255725
;
500
255725
}
,
{\displaystyle \mathbf {a} ^{\circ }|_{t=5}=\{{\frac {10}{\sqrt {100+5625+250000}}};{\frac {75}{\sqrt {255725}}};{\frac {500}{\sqrt {255725}}}\},}
a
∘
|
t
=
5
=
{
10
505.6925944
;
75
505.6925944
;
500
505.6925944
}
,
{\displaystyle \mathbf {a} ^{\circ }|_{t=5}=\{{\frac {10}{505.6925944}};{\frac {75}{505.6925944}};{\frac {500}{505.6925944}}\},}
a
∘
|
t
=
5
=
{
0.019774859
;
0.148311446
;
0.988742974
}
;
{\displaystyle \mathbf {a} ^{\circ }|_{t=5}=\{0.019774859;0.148311446;0.988742974\};}
b
=
{
1
;
ψ
′
(
t
)
ϕ
′
(
t
)
;
ω
′
(
t
)
ϕ
′
(
t
)
}
=
{
1
;
3
t
2
2
t
;
4
t
3
2
t
}
,
{\displaystyle \mathbf {b} =\{1;{\frac {\psi '(t)}{\phi '(t)}};{\frac {\omega '(t)}{\phi '(t)}}\}=\{1;{\frac {3t^{2}}{2t}};{\frac {4t^{3}}{2t}}\},}
b
=
{
1
;
3
t
2
;
2
t
2
}
;
{\displaystyle \mathbf {b} =\{1;{\frac {3t}{2}};2t^{2}\};}
liestinės vektoriaus b reikšmė, kai
t
=
1
{\displaystyle t=1}
yra:
b
|
t
=
1
=
{
1
;
3
2
;
2
}
;
{\displaystyle \mathbf {b} |_{t=1}=\{1;{\frac {3}{2}};2\};}
normalizuoto liestinės vektoriaus b reikšmė, kai
t
=
1
{\displaystyle t=1}
yra:
b
∘
|
t
=
1
=
{
1
1
2
+
1.5
2
+
2
2
;
1.5
1
2
+
1.5
2
+
2
2
;
2
1
2
+
1.5
2
+
2
2
}
,
{\displaystyle \mathbf {b} ^{\circ }|_{t=1}=\{{\frac {1}{\sqrt {1^{2}+1.5^{2}+2^{2}}}};{\frac {1.5}{\sqrt {1^{2}+1.5^{2}+2^{2}}}};{\frac {2}{\sqrt {1^{2}+1.5^{2}+2^{2}}}}\},}
b
∘
|
t
=
1
=
{
1
1
+
2.25
+
4
;
1.5
7.25
;
2
7.25
}
=
{
1
2.692582404
;
1.5
2.692582404
;
2
2.692582404
}
,
{\displaystyle \mathbf {b} ^{\circ }|_{t=1}=\{{\frac {1}{\sqrt {1+2.25+4}}};{\frac {1.5}{\sqrt {7.25}}};{\frac {2}{\sqrt {7.25}}}\}=\{{\frac {1}{2.692582404}};{\frac {1.5}{2.692582404}};{\frac {2}{2.692582404}}\},}
b
∘
|
t
=
1
=
{
0.371390676
;
0.557086014
;
0.742781352
}
;
{\displaystyle \mathbf {b} ^{\circ }|_{t=1}=\{0.371390676;0.557086014;0.742781352\};}
liestinės vektoriaus b reikšmė, kai
t
=
5
{\displaystyle t=5}
yra:
b
|
t
=
5
=
{
1
;
3
⋅
5
2
;
2
⋅
5
2
}
=
{
1
;
15
2
;
50
}
;
{\displaystyle \mathbf {b} |_{t=5}=\{1;{\frac {3\cdot 5}{2}};2\cdot 5^{2}\}=\{1;{\frac {15}{2}};50\};}
normalizuoto vektoriaus b reikšmė, kai
t
=
5
{\displaystyle t=5}
yra tokia pati kaip normalizuoto a vektoriaus:
b
∘
|
t
=
5
=
{
1
1
2
+
7.5
2
+
50
2
;
15
2
1
+
56.25
+
2500
;
50
2557.25
}
;
{\displaystyle \mathbf {b} ^{\circ }|_{t=5}=\{{\frac {1}{\sqrt {1^{2}+7.5^{2}+50^{2}}}};{\frac {\frac {15}{2}}{\sqrt {1+56.25+2500}}};{\frac {50}{\sqrt {2557.25}}}\};}
b
∘
|
t
=
5
=
{
1
50.56925944
;
7.5
50.56925944
;
50
50.56925944
}
;
{\displaystyle \mathbf {b} ^{\circ }|_{t=5}=\{{\frac {1}{50.56925944}};{\frac {7.5}{50.56925944}};{\frac {50}{50.56925944}}\};}
b
∘
|
t
=
5
=
{
0.019774859
;
0.148311446
;
0.988742974
}
;
{\displaystyle \mathbf {b} ^{\circ }|_{t=5}=\{0.019774859;0.148311446;0.988742974\};}
f) 'Tikrasis' kreivės normalės vektorius yra:
m
=
{
2
−
3
ϕ
′
(
t
)
;
1
3
ψ
′
(
t
)
;
1
3
ω
′
(
t
)
}
=
{
2
−
3
⋅
2
t
;
1
3
⋅
3
t
2
;
1
3
⋅
4
t
3
}
,
{\displaystyle \mathbf {m} =\{{\frac {2}{-3\phi '(t)}};{\frac {1}{3\psi '(t)}};{\frac {1}{3\omega '(t)}}\}=\{{\frac {2}{-3\cdot 2t}};{\frac {1}{3\cdot 3t^{2}}};{\frac {1}{3\cdot 4t^{3}}}\},}
m
=
{
−
1
3
t
;
1
9
t
2
;
1
12
t
3
}
;
{\displaystyle \mathbf {m} =\{-{\frac {1}{3t}};{\frac {1}{9t^{2}}};{\frac {1}{12t^{3}}}\};}
'tikrasis' kreivės normalės vektorius, kai
t
=
1
{\displaystyle t=1}
yra:
m
|
t
=
1
=
{
−
1
3
;
1
9
;
1
12
}
;
{\displaystyle \mathbf {m} |_{t=1}=\{-{\frac {1}{3}};{\frac {1}{9}};{\frac {1}{12}}\};}
normalizuotas 'tikrasis' kreivės normalės vektorius, kai
t
=
1
{\displaystyle t=1}
yra:
m
∘
|
t
=
1
=
{
−
1
3
(
−
1
3
)
2
+
(
1
9
)
2
+
(
1
12
)
2
;
1
9
(
−
1
3
)
2
+
(
1
9
)
2
+
(
1
12
)
2
;
1
12
(
−
1
3
)
2
+
(
1
9
)
2
+
(
1
12
)
2
}
,
{\displaystyle \mathbf {m} ^{\circ }|_{t=1}=\{-{\frac {\frac {1}{3}}{\sqrt {(-{\frac {1}{3}})^{2}+({\frac {1}{9}})^{2}+({\frac {1}{12}})^{2}}}};{\frac {\frac {1}{9}}{\sqrt {(-{\frac {1}{3}})^{2}+({\frac {1}{9}})^{2}+({\frac {1}{12}})^{2}}}};{\frac {\frac {1}{12}}{\sqrt {(-{\frac {1}{3}})^{2}+({\frac {1}{9}})^{2}+({\frac {1}{12}})^{2}}}}\},}
m
∘
|
t
=
1
=
{
−
1
3
1
9
+
1
81
+
1
144
;
1
9
1296
+
144
+
81
81
⋅
144
;
1
12
1521
11664
}
,
{\displaystyle \mathbf {m} ^{\circ }|_{t=1}=\{-{\frac {\frac {1}{3}}{\sqrt {{\frac {1}{9}}+{\frac {1}{81}}+{\frac {1}{144}}}}};{\frac {\frac {1}{9}}{\sqrt {\frac {1296+144+81}{81\cdot 144}}}};{\frac {\frac {1}{12}}{\sqrt {\frac {1521}{11664}}}}\},}
m
∘
|
t
=
1
=
{
−
1
3
0.130401234
;
1
9
0.130401234
;
1
12
0.130401234
}
=
{
−
1
3
0.361111111
;
1
9
0.361111111
;
1
12
0.361111111
}
,
{\displaystyle \mathbf {m} ^{\circ }|_{t=1}=\{-{\frac {\frac {1}{3}}{\sqrt {0.130401234}}};{\frac {\frac {1}{9}}{\sqrt {0.130401234}}};{\frac {\frac {1}{12}}{\sqrt {0.130401234}}}\}=\{-{\frac {\frac {1}{3}}{0.361111111}};{\frac {\frac {1}{9}}{0.361111111}};{\frac {\frac {1}{12}}{0.361111111}}\},}
m
∘
|
t
=
1
=
{
−
0.923076923
;
0.307692307
;
0.23076923
}
;
{\displaystyle \mathbf {m} ^{\circ }|_{t=1}=\{-0.923076923;0.307692307;0.23076923\};}
'tikrasis' kreivės normalės vektorius, kai
t
=
5
{\displaystyle t=5}
yra:
m
|
t
=
5
=
{
−
1
3
⋅
5
;
1
9
⋅
5
2
;
1
12
⋅
5
3
}
=
{
−
1
15
;
1
9
⋅
25
;
1
12
⋅
125
}
,
{\displaystyle \mathbf {m} |_{t=5}=\{-{\frac {1}{3\cdot 5}};{\frac {1}{9\cdot 5^{2}}};{\frac {1}{12\cdot 5^{3}}}\}=\{-{\frac {1}{15}};{\frac {1}{9\cdot 25}};{\frac {1}{12\cdot 125}}\},}
m
|
t
=
5
=
{
−
1
15
;
1
225
;
1
1500
}
;
{\displaystyle \mathbf {m} |_{t=5}=\{-{\frac {1}{15}};{\frac {1}{225}};{\frac {1}{1500}}\};}
normalizuotas 'tikrasis' kreivės normalės vektorius, kai
t
=
5
{\displaystyle t=5}
yra:
m
∘
|
t
=
5
=
{
−
1
15
(
−
1
15
)
2
+
(
1
225
)
2
+
(
1
1500
)
2
;
1
225
0.004464641
;
1
500
0.066817976
}
,
{\displaystyle \mathbf {m} ^{\circ }|_{t=5}=\{{\frac {-{\frac {1}{15}}}{\sqrt {(-{\frac {1}{15}})^{2}+({\frac {1}{225}})^{2}+({\frac {1}{1500}})^{2}}}};{\frac {\frac {1}{225}}{\sqrt {0.004464641}}};{\frac {\frac {1}{500}}{0.066817976}}\},}
m
∘
|
t
=
5
=
{
−
0.99735493
;
0.066515699
;
0.009977354
}
;
{\displaystyle \mathbf {m} ^{\circ }|_{t=5}=\{-0.99735493;0.066515699;0.009977354\};}
kampas tarp liestinės vektoriaus a ir 'tikrojo' normalės vektoriaus m yra lygus 90 laipsnių, nes jų skaliarinė sandauga lygi nuliui:
a
|
t
=
1
⋅
m
|
t
=
1
=
2
⋅
(
−
1
3
)
+
3
⋅
1
9
+
4
⋅
1
12
=
−
2
3
+
1
3
+
1
3
=
0
;
{\displaystyle \mathbf {a} |_{t=1}\cdot \mathbf {m} |_{t=1}=2\cdot (-{\frac {1}{3}})+3\cdot {\frac {1}{9}}+4\cdot {\frac {1}{12}}=-{\frac {2}{3}}+{\frac {1}{3}}+{\frac {1}{3}}=0;}
liestinės vektorius, kai
t
=
5
{\displaystyle t=5}
yra:
a
|
t
=
5
=
{
2
⋅
5
;
3
⋅
5
2
;
4
⋅
5
3
}
=
{
10
;
75
;
500
}
;
{\displaystyle \mathbf {a} |_{t=5}=\{2\cdot 5;3\cdot 5^{2};4\cdot 5^{3}\}=\{10;75;500\};}
kampas tarp liestinės vektoriaus ir 'tikrojo' normalės vektoriaus m yra 90 laipsnių, nes šių vektorių skaliarinė sandauga lygi nuliui:
a
|
t
=
5
⋅
m
|
t
=
5
=
10
⋅
(
−
1
15
)
+
75
⋅
1
225
+
500
⋅
1
1500
=
−
2
3
+
1
3
+
1
3
=
0.
{\displaystyle \mathbf {a} |_{t=5}\cdot \mathbf {m} |_{t=5}=10\cdot (-{\frac {1}{15}})+75\cdot {\frac {1}{225}}+500\cdot {\frac {1}{1500}}=-{\frac {2}{3}}+{\frac {1}{3}}+{\frac {1}{3}}=0.}
g) 'Tikrasis' kreivės normalės vektorius yra:
m
=
{
−
2
3
;
ϕ
′
(
t
)
3
ψ
′
(
t
)
;
ϕ
′
(
t
)
3
ω
′
(
t
)
}
=
{
−
2
3
;
2
t
3
⋅
3
t
2
;
2
t
3
⋅
4
t
3
}
,
{\displaystyle \mathbf {m} =\{-{\frac {2}{3}};{\frac {\phi '(t)}{3\psi '(t)}};{\frac {\phi '(t)}{3\omega '(t)}}\}=\{-{\frac {2}{3}};{\frac {2t}{3\cdot 3t^{2}}};{\frac {2t}{3\cdot 4t^{3}}}\},}
m
=
{
−
2
3
;
2
t
9
t
2
;
2
t
12
t
3
}
=
{
−
2
3
;
2
t
9
t
2
;
t
6
t
3
}
;
{\displaystyle \mathbf {m} =\{-{\frac {2}{3}};{\frac {2t}{9t^{2}}};{\frac {2t}{12t^{3}}}\}=\{-{\frac {2}{3}};{\frac {2t}{9t^{2}}};{\frac {t}{6t^{3}}}\};}
'tikrasis' kreivės normalės vektorius, kai
t
=
1
{\displaystyle t=1}
yra:
m
|
t
=
1
=
{
−
2
3
;
2
9
;
1
6
}
;
{\displaystyle \mathbf {m} |_{t=1}=\{-{\frac {2}{3}};{\frac {2}{9}};{\frac {1}{6}}\};}
'tikrasis' kreivės normalės vektorius, kai
t
=
5
{\displaystyle t=5}
yra:
m
|
t
=
5
=
{
−
2
3
;
2
⋅
5
9
⋅
5
2
;
5
6
⋅
5
3
}
=
{
−
2
3
;
2
45
;
1
150
}
;
{\displaystyle \mathbf {m} |_{t=5}=\{-{\frac {2}{3}};{\frac {2\cdot 5}{9\cdot 5^{2}}};{\frac {5}{6\cdot 5^{3}}}\}=\{-{\frac {2}{3}};{\frac {2}{45}};{\frac {1}{150}}\};}
kampas tarp liestinės vektoriaus a ir 'tikrojo' normalės vektoriaus m yra lygus 90 laipsnių, nes jų skaliarinė sandauga lygi nuliui:
a
|
t
=
1
⋅
m
|
t
=
1
=
2
⋅
(
−
2
3
)
+
3
⋅
2
9
+
4
⋅
1
6
=
−
4
3
+
2
3
+
2
3
=
0
;
{\displaystyle \mathbf {a} |_{t=1}\cdot \mathbf {m} |_{t=1}=2\cdot (-{\frac {2}{3}})+3\cdot {\frac {2}{9}}+4\cdot {\frac {1}{6}}=-{\frac {4}{3}}+{\frac {2}{3}}+{\frac {2}{3}}=0;}
a
|
t
=
5
⋅
m
|
t
=
5
=
10
⋅
(
−
2
3
)
+
75
⋅
2
45
+
500
⋅
1
150
=
−
20
3
+
10
3
+
10
3
=
0.
{\displaystyle \mathbf {a} |_{t=5}\cdot \mathbf {m} |_{t=5}=10\cdot (-{\frac {2}{3}})+75\cdot {\frac {2}{45}}+500\cdot {\frac {1}{150}}=-{\frac {20}{3}}+{\frac {10}{3}}+{\frac {10}{3}}=0.}
Update 1. Alternatyvus liestinei statmenas vektorius gautas pagal formulę
n
=
{
2
−
3
ϕ
′
(
t
)
;
1
3
ψ
′
(
t
)
;
1
3
ω
′
(
t
)
}
{\displaystyle \mathbf {n} =\{{\frac {2}{-3\phi '(t)}};{\frac {1}{3\psi '(t)}};{\frac {1}{3\omega '(t)}}\}}
yra paprastas triukas. Kadangi liestinės vektorius yra
a
=
{
ϕ
′
(
t
)
;
ψ
′
(
t
)
;
ω
′
(
t
)
}
,
{\displaystyle \mathbf {a} =\{\phi '(t);\psi '(t);\omega '(t)\},}
tai aišku, kad vektorių n ir a skaliarinė sandauga bus lygi nuliui. Todėl normalės vektorius gali būti ir
n
=
{
1
ϕ
′
(
t
)
;
−
2
ψ
′
(
t
)
;
1
ω
′
(
t
)
}
{\displaystyle \mathbf {n} =\{{\frac {1}{\phi '(t)}};{\frac {-2}{\psi '(t)}};{\frac {1}{\omega '(t)}}\}}
ir
n
=
{
1
ϕ
′
(
t
)
;
1
ψ
′
(
t
)
;
−
2
ω
′
(
t
)
}
.
{\displaystyle \mathbf {n} =\{{\frac {1}{\phi '(t)}};{\frac {1}{\psi '(t)}};{\frac {-2}{\omega '(t)}}\}.}
Taip pat erdvinės kreivės (užrašytos parametriškai) liestinės vektoriui a statmenas vektorius bus ir pavyzdžiui vektorius
m
=
{
−
2
ϕ
′
(
t
)
;
1.5
ψ
′
(
t
)
;
0.5
ω
′
(
t
)
}
,
{\displaystyle \mathbf {m} =\{{\frac {-2}{\phi '(t)}};{\frac {1.5}{\psi '(t)}};{\frac {0.5}{\omega '(t)}}\},}
nes jų skaliarinė sandauga lygi nuliui:
a
⋅
m
=
ϕ
′
(
t
)
⋅
−
2
ϕ
′
(
t
)
+
ψ
′
(
t
)
⋅
1.5
ψ
′
(
t
)
+
ω
′
(
t
)
⋅
0.5
ω
′
(
t
)
=
−
2
+
1.5
+
0.5
=
0.
{\displaystyle \mathbf {a} \cdot \mathbf {m} =\phi '(t)\cdot {\frac {-2}{\phi '(t)}}+\psi '(t)\cdot {\frac {1.5}{\psi '(t)}}+\omega '(t)\cdot {\frac {0.5}{\omega '(t)}}=-2+1.5+0.5=0.}
Tokiu budu erdvinės kreivės liestinės vektoriui
a
=
{
ϕ
′
(
t
)
;
ψ
′
(
t
)
;
ω
′
(
t
)
}
{\displaystyle \mathbf {a} =\{\phi '(t);\psi '(t);\omega '(t)\}}
galima sudaryti begalo daug statmenų normalės vektorių n (kurių ortai skiriasi - normalės vektoriai neguli ant tos pačios tiesės).
Kampo tarp vektorių radimas su sinusu
keisti
‖
a
×
b
‖
=
‖
a
‖
‖
b
‖
sin
(
θ
)
,
{\displaystyle \left\|\mathbf {a} \times \mathbf {b} \right\|=\left\|\mathbf {a} \right\|\left\|\mathbf {b} \right\|\sin(\theta ),}
sin
θ
=
‖
a
×
b
‖
‖
a
‖
‖
b
‖
,
{\displaystyle \sin \theta ={\frac {\|\mathbf {a} \times \mathbf {b} \|}{\|\mathbf {a} \|\|\mathbf {b} \|}},}
kur
θ
{\displaystyle \theta }
yra kampas tarp vektorių a ir b .
Pavyzdžiui, duoti vektoriai a =(1; -2; 0), b =(3; 0; 0).
‖
a
‖
=
1
2
+
(
−
2
)
2
+
0
2
=
5
≈
2.236067978.
{\displaystyle \left\|\mathbf {a} \right\|={\sqrt {1^{2}+(-2)^{2}+0^{2}}}={\sqrt {5}}\approx 2.236067978.}
‖
b
‖
=
3
2
+
0
2
+
0
2
=
9
=
3.
{\displaystyle \left\|\mathbf {b} \right\|={\sqrt {3^{2}+0^{2}+0^{2}}}={\sqrt {9}}=3.}
a
×
b
=
|
i
j
k
1
−
2
0
3
0
0
|
=
{\displaystyle \mathbf {a} \times \mathbf {b} ={\begin{vmatrix}i&j&k\\1&-2&0\\3&0&0\end{vmatrix}}=}
=
i
⋅
(
−
2
)
⋅
0
+
j
⋅
0
⋅
3
+
k
⋅
1
⋅
0
−
i
⋅
0
⋅
0
−
j
⋅
1
⋅
0
−
k
⋅
(
−
2
)
⋅
3
=
0
i
+
0
j
+
6
k
=
(
0
;
0
;
6
)
.
{\displaystyle =i\cdot (-2)\cdot 0+j\cdot 0\cdot 3+k\cdot 1\cdot 0-i\cdot 0\cdot 0-j\cdot 1\cdot 0-k\cdot (-2)\cdot 3=0i+0j+6k=(0;0;6).}
‖
a
×
b
‖
=
0
2
+
0
2
+
6
2
=
36
=
6.
{\displaystyle \|\mathbf {a} \times \mathbf {b} \|={\sqrt {0^{2}+0^{2}+6^{2}}}={\sqrt {36}}=6.}
sin
θ
=
‖
a
×
b
‖
‖
a
‖
‖
b
‖
=
6
5
⋅
3
=
2
5
=
0.894427191
;
{\displaystyle \sin \theta ={\frac {\|\mathbf {a} \times \mathbf {b} \|}{\|\mathbf {a} \|\|\mathbf {b} \|}}={\frac {6}{{\sqrt {5}}\cdot 3}}={\frac {2}{\sqrt {5}}}=0.894427191;}
θ
=
arcsin
2
5
=
arcsin
0.894427191
=
1.107148718
{\displaystyle \theta =\arcsin {\frac {2}{\sqrt {5}}}=\arcsin 0.894427191=1.107148718}
radiano arba 63.43494882 laipsnio.
Pasitikriname:
cos
θ
=
a
⋅
b
‖
a
‖
⋅
‖
b
‖
=
1
⋅
3
+
(
−
2
)
⋅
0
+
0
⋅
0
1
2
+
(
−
2
)
2
+
0
2
⋅
3
2
+
0
2
+
0
2
=
3
1
+
4
+
0
⋅
9
+
0
+
0
=
{\displaystyle \cos \theta ={\frac {\mathbf {a} \cdot \mathbf {b} }{\|\mathbf {a} \|\cdot \|\mathbf {b} \|}}={\frac {1\cdot 3+(-2)\cdot 0+0\cdot 0}{{\sqrt {1^{2}+(-2)^{2}+0^{2}}}\cdot {\sqrt {3^{2}+0^{2}+0^{2}}}}}={\frac {3}{{\sqrt {1+4+0}}\cdot {\sqrt {9+0+0}}}}=}
=
3
5
⋅
3
=
1
5
=
0.447213595.
{\displaystyle ={\frac {3}{{\sqrt {5}}\cdot 3}}={\frac {1}{\sqrt {5}}}=0.447213595.}
θ
=
arccos
1
5
=
arccos
0.447213595
=
1.107148718
{\displaystyle \theta =\arccos {\frac {1}{\sqrt {5}}}=\arccos 0.447213595=1.107148718}
radiano arba 63,43494882 laipsnių.
Taikydami kosinusų toeremą patikrinsime ar kampas
θ
{\displaystyle \theta }
surastas teisingai. Atkarpos t ilgis iš taško a=(1; -2; 0) iki taško b=(3; 0; 0) yra lygus
t
=
(
1
−
3
)
2
+
(
−
2
−
0
)
2
+
(
0
−
0
)
2
=
4
+
4
+
0
=
8
=
2
2
=
2.828427125.
{\displaystyle t={\sqrt {(1-3)^{2}+(-2-0)^{2}+(0-0)^{2}}}={\sqrt {4+4+0}}={\sqrt {8}}=2{\sqrt {2}}=2.828427125.}
Iš kosinusų teoremos žinome, kad
t
2
=
‖
a
‖
2
+
‖
b
‖
2
−
2
‖
a
‖
⋅
‖
b
‖
cos
θ
{\displaystyle t^{2}\ =\|\mathbf {a} \|^{2}+\|\mathbf {b} \|^{2}-2\|\mathbf {a} \|\cdot \|\mathbf {b} \|\cos \theta }
;
cos
θ
=
t
2
−
‖
a
‖
2
−
‖
b
‖
2
−
2
‖
a
‖
‖
b
‖
=
(
8
)
2
−
(
5
)
2
−
3
2
−
2
⋅
5
⋅
3
=
8
−
5
−
9
−
6
5
=
−
6
−
6
5
=
1
5
.
{\displaystyle \cos \theta ={t^{2}-\|\mathbf {a} \|^{2}-\|\mathbf {b} \|^{2} \over -2\|\mathbf {a} \|\|\mathbf {b} \|}={({\sqrt {8}})^{2}-({\sqrt {5}})^{2}-3^{2} \over -2\cdot {\sqrt {5}}\cdot 3}={8-5-9 \over -6{\sqrt {5}}}={-6 \over -6{\sqrt {5}}}={1 \over {\sqrt {5}}}.}
Pavyzdžiui, duoti vektoriai a=(1; -2; 2), b=(3; 0; -4). Jų vektorinė sandauga lygi
a
×
b
=
|
i
j
k
1
−
2
2
3
0
−
4
|
=
|
−
2
2
0
−
4
|
i
−
|
1
2
3
−
4
|
j
+
|
1
−
2
3
0
|
k
=
8
i
+
10
j
+
6
k
=
(
8
;
10
;
6
)
.
{\displaystyle a\times b={\begin{vmatrix}i&j&k\\1&-2&2\\3&0&-4\end{vmatrix}}={\begin{vmatrix}-2&2\\0&-4\end{vmatrix}}i-{\begin{vmatrix}1&2\\3&-4\end{vmatrix}}j+{\begin{vmatrix}1&-2\\3&0\end{vmatrix}}k=8i+10j+6k=(8;10;6).}
Čia skaičiuodami vektorinę sandaugą panaudojome determinantą .
Vektorinės sandaugos modulis yra lygiagretainio plotas, kurį sudaro du vektoriai:
S
=
|
|
a
×
b
|
|
=
8
2
+
10
2
+
6
2
=
200
=
10
2
.
{\displaystyle S=||a\times b||={\sqrt {8^{2}+10^{2}+6^{2}}}={\sqrt {200}}=10{\sqrt {2}}.}
Trikampio plotas yra
S
Δ
=
1
2
|
|
a
×
b
|
|
=
5
2
.
{\displaystyle S_{\Delta }={\frac {1}{2}}||a\times b||=5{\sqrt {2}}.}
Kampo tarp vektorių sinusas yra
sin
ϕ
=
|
|
a
×
b
|
|
|
|
a
|
|
⋅
|
|
b
|
|
=
10
2
3
⋅
5
=
2
2
3
,
{\displaystyle \sin \phi ={\frac {||a\times b||}{||a||\cdot ||b||}}={\frac {10{\sqrt {2}}}{3\cdot 5}}={\frac {2{\sqrt {2}}}{3}},}
ϕ
=
arcsin
2
2
3
=
1.230959417
{\displaystyle \phi =\arcsin {\frac {2{\sqrt {2}}}{3}}=1.230959417}
radianų arba
ϕ
=
70
,
52877937
{\displaystyle \phi =70,52877937}
laipsnių, kur
|
|
a
|
|
=
1
2
+
(
−
2
)
2
+
2
2
=
9
=
3
,
{\displaystyle ||a||={\sqrt {1^{2}+(-2)^{2}+2^{2}}}={\sqrt {9}}=3,}
|
|
b
|
|
=
3
2
+
0
2
+
(
−
4
)
2
=
25
=
5.
{\displaystyle ||b||={\sqrt {3^{2}+0^{2}+(-4)^{2}}}={\sqrt {25}}=5.}
Taikydami kosinusų toeremą ir Herono formulę patikrinsime ar kampas
ϕ
{\displaystyle \phi }
ir trikampio plotas S surasti teisingai. Atkarpos f ilgis iš taško a=(1; -2; 2) iki taško b=(3; 0; -4) yra lygus
f
=
(
1
−
3
)
2
+
(
−
2
−
0
)
2
+
(
2
−
(
−
4
)
)
2
=
4
+
4
+
36
=
44
=
2
11
=
6.633249581.
{\displaystyle f={\sqrt {(1-3)^{2}+(-2-0)^{2}+(2-(-4))^{2}}}={\sqrt {4+4+36}}={\sqrt {44}}=2{\sqrt {11}}=6.633249581.}
Pagal Herono formulę randame trikampio pusperimetrį
p
=
3
+
5
+
2
11
2
=
4
+
11
=
7.31662479.
{\displaystyle p={3+5+2{\sqrt {11}} \over 2}=4+{\sqrt {11}}=7.31662479.}
S
Δ
=
p
(
p
−
a
)
(
p
−
b
)
(
p
−
f
)
=
(
4
+
11
)
(
7.31662479
−
3
)
(
7.31662479
−
5
)
(
4
+
11
−
2
11
)
=
{\displaystyle S_{\Delta }={\sqrt {p(p-a)(p-b)(p-f)}}={\sqrt {(4+{\sqrt {11}})(7.31662479-3)(7.31662479-5)(4+{\sqrt {11}}-2{\sqrt {11}})}}=}
=
7.31662479
⋅
4.31662479
⋅
2.31662479
⋅
(
4
−
11
)
=
50
=
5
2
=
7.071067812.
{\displaystyle ={\sqrt {7.31662479\cdot 4.31662479\cdot 2.31662479\cdot (4-{\sqrt {11}})}}={\sqrt {50}}=5{\sqrt {2}}=7.071067812.}
Iš kosinusų teoremos žinome, kad
f
2
=
a
2
+
b
2
−
2
a
b
cos
(
ϕ
)
{\displaystyle f^{2}\ =a^{2}+b^{2}-2ab\cos(\phi )}
;
cos
ϕ
=
f
2
−
a
2
−
b
2
−
2
a
b
=
(
2
11
)
2
−
3
2
−
5
2
−
2
⋅
3
⋅
5
=
44
−
9
−
25
−
30
=
10
−
30
=
−
1
3
.
{\displaystyle \cos \phi ={f^{2}-a^{2}-b^{2} \over -2ab}={(2{\sqrt {11}})^{2}-3^{2}-5^{2} \over -2\cdot 3\cdot 5}={44-9-25 \over -30}={10 \over -30}=-{1 \over 3}.}
ϕ
=
arccos
(
−
1
3
)
=
1.910633236
{\displaystyle \phi =\arccos(-{1 \over 3})=1.910633236}
radiano arba 109.4712206 laipsnio.
Idomus faktas, jog
ϕ
=
arccos
1
3
=
1.230959417
{\displaystyle \phi =\arccos {1 \over 3}=1.230959417}
radiano arba 70.52877937 laipsnio.
Dar kitas būdas patikrinti:
cos
ϕ
=
a
⋅
b
‖
a
‖
⋅
‖
b
‖
=
1
⋅
3
+
(
−
2
)
⋅
0
+
2
⋅
(
−
4
)
1
2
+
(
−
2
)
2
+
2
2
⋅
3
2
+
0
2
+
(
−
4
)
2
=
3
+
0
−
8
1
+
4
+
4
⋅
9
+
0
+
16
=
{\displaystyle \cos \phi ={\frac {\mathbf {a} \cdot \mathbf {b} }{\|\mathbf {a} \|\cdot \|\mathbf {b} \|}}={\frac {1\cdot 3+(-2)\cdot 0+2\cdot (-4)}{{\sqrt {1^{2}+(-2)^{2}+2^{2}}}\cdot {\sqrt {3^{2}+0^{2}+(-4)^{2}}}}}={\frac {3+0-8}{{\sqrt {1+4+4}}\cdot {\sqrt {9+0+16}}}}=}
=
−
5
9
⋅
25
=
−
5
15
=
−
1
3
.
{\displaystyle ={\frac {-5}{{\sqrt {9}}\cdot {\sqrt {25}}}}={\frac {-5}{15}}=-{\frac {1}{3}}.}
Duoti vektoriai a =(1; 2; 3), b =(3; 5; 4).
a
×
b
=
|
i
j
k
1
2
3
3
5
4
|
=
|
2
3
5
4
|
i
−
|
1
3
3
4
|
j
+
|
1
2
3
5
|
k
=
{\displaystyle \mathbf {a} \times \mathbf {b} ={\begin{vmatrix}i&j&k\\1&2&3\\3&5&4\end{vmatrix}}={\begin{vmatrix}2&3\\5&4\end{vmatrix}}i-{\begin{vmatrix}1&3\\3&4\end{vmatrix}}j+{\begin{vmatrix}1&2\\3&5\end{vmatrix}}k=}
=
(
−
1
)
1
+
1
⋅
(
2
⋅
4
−
3
⋅
5
)
i
+
(
−
1
)
1
+
2
⋅
(
1
⋅
4
−
3
⋅
3
)
j
+
(
−
1
)
1
+
3
⋅
(
1
⋅
5
−
2
⋅
3
)
k
=
−
7
i
+
5
j
−
1
k
=
(
−
7
;
5
;
−
1
)
.
{\displaystyle =(-1)^{1+1}\cdot (2\cdot 4-3\cdot 5)i+(-1)^{1+2}\cdot (1\cdot 4-3\cdot 3)j+(-1)^{1+3}\cdot (1\cdot 5-2\cdot 3)k=-7i+5j-1k=(-7;5;-1).}
sin
θ
=
‖
a
×
b
‖
‖
a
‖
‖
b
‖
=
(
−
7
)
2
+
5
2
+
(
−
1
)
2
1
2
+
2
2
+
3
2
⋅
3
2
+
5
2
+
4
2
=
49
+
25
+
1
1
+
4
+
9
⋅
9
+
25
+
16
=
{\displaystyle \sin \theta ={\frac {\|\mathbf {a} \times \mathbf {b} \|}{\|\mathbf {a} \|\|\mathbf {b} \|}}={\frac {\sqrt {(-7)^{2}+5^{2}+(-1)^{2}}}{{\sqrt {1^{2}+2^{2}+3^{2}}}\cdot {\sqrt {3^{2}+5^{2}+4^{2}}}}}={\frac {\sqrt {49+25+1}}{{\sqrt {1+4+9}}\cdot {\sqrt {9+25+16}}}}=}
=
75
14
⋅
50
=
75
700
=
8.660254038
26.45751311
=
0.327326835.
{\displaystyle ={\frac {\sqrt {75}}{{\sqrt {14}}\cdot {\sqrt {50}}}}={\frac {\sqrt {75}}{\sqrt {700}}}={\frac {8.660254038}{26.45751311}}=0.327326835.}
θ
=
arcsin
0.327326835
=
0.333473172
{\displaystyle \theta =\arcsin 0.327326835=0.333473172}
radiano arba 19.10660535 laipsnio.
Patikriname kitu budu:
cos
θ
=
a
⋅
b
|
|
a
|
|
⋅
|
|
b
|
|
=
1
⋅
3
+
2
⋅
5
+
3
⋅
4
1
2
+
2
2
+
3
2
⋅
3
2
+
5
2
+
4
2
=
3
+
10
+
12
14
⋅
50
=
25
700
=
0.944911182.
{\displaystyle \cos \theta ={\frac {\mathbf {a} \cdot \mathbf {b} }{||\mathbf {a} ||\cdot ||\mathbf {b} ||}}={\frac {1\cdot 3+2\cdot 5+3\cdot 4}{{\sqrt {1^{2}+2^{2}+3^{2}}}\cdot {\sqrt {3^{2}+5^{2}+4^{2}}}}}={\frac {3+10+12}{{\sqrt {14}}\cdot {\sqrt {50}}}}={\frac {25}{\sqrt {700}}}=0.944911182.}
θ
=
arccos
0.944911182
=
0.333473172
{\displaystyle \theta =\arccos 0.944911182=0.333473172}
radiano arba 19.10660535 laipsnio.
Pagal Pitagoro teoremą patikriname atsakymą. Tiek vektorius a , tiek vektorius b išeina iš taško (x; y; z)=(0; 0; 0). Vadinasi vektorius a ir vektorius b liečiasi tame pačiame taške, kurį pavadiname A . Taškas B turi koordinates (1; 2; 3), o taškas C turi koordinates (3; 5; 4). Tokiu budu ||a ||=AB=a, o ||b ||=AC=b. Turime trikampį ABC. Iš taško B(1; 2; 3) nuleista aukštinė h į trikampio kraštinę AC, susikirtimo tašką aukštinės h su kraštine AC, pavadinkime D . Kraštine AD=x, o kraštinė DC=||b ||-x=b-x. BC=c.
c
=
(
3
−
1
)
2
+
(
5
−
2
)
2
+
(
4
−
3
)
2
=
2
2
+
3
2
+
1
2
=
4
+
9
+
1
=
14
=
3.741657387.
{\displaystyle c={\sqrt {(3-1)^{2}+(5-2)^{2}+(4-3)^{2}}}={\sqrt {2^{2}+3^{2}+1^{2}}}={\sqrt {4+9+1}}={\sqrt {14}}=3.741657387.}
a
=
‖
a
‖
=
1
2
+
2
2
+
3
2
=
1
+
4
+
9
=
14
=
3.741657387.
{\displaystyle a=\|\mathbf {a} \|={\sqrt {1^{2}+2^{2}+3^{2}}}={\sqrt {1+4+9}}={\sqrt {14}}=3.741657387.}
b
=
‖
b
‖
=
3
2
+
5
2
+
4
2
=
9
+
25
+
16
=
30
=
5.477225575.
{\displaystyle b=\|\mathbf {b} \|={\sqrt {3^{2}+5^{2}+4^{2}}}={\sqrt {9+25+16}}={\sqrt {30}}=5.477225575.}
h
=
a
2
−
x
2
=
(
14
)
2
−
x
2
=
14
−
x
2
.
{\displaystyle h={\sqrt {a^{2}-x^{2}}}={\sqrt {({\sqrt {14}})^{2}-x^{2}}}={\sqrt {14-x^{2}}}.}
h
=
c
2
−
(
b
−
x
)
2
=
(
14
)
2
−
(
30
−
x
)
2
=
14
−
(
30
−
2
x
30
+
x
2
)
.
{\displaystyle h={\sqrt {c^{2}-(b-x)^{2}}}={\sqrt {({\sqrt {14}})^{2}-({\sqrt {30}}-x)^{2}}}={\sqrt {14-(30-2x{\sqrt {30}}+x^{2})}}.}
a
2
−
x
2
=
c
2
−
(
b
−
x
)
2
;
{\displaystyle {\sqrt {a^{2}-x^{2}}}={\sqrt {c^{2}-(b-x)^{2}}};}
a
2
−
x
2
=
c
2
−
(
b
−
x
)
2
{\displaystyle a^{2}-x^{2}=c^{2}-(b-x)^{2}}
;
a
2
−
x
2
=
c
2
−
(
b
2
−
2
b
x
+
x
2
)
;
{\displaystyle a^{2}-x^{2}=c^{2}-(b^{2}-2bx+x^{2});}
a
2
−
x
2
=
c
2
−
b
2
+
2
b
x
−
x
2
;
{\displaystyle a^{2}-x^{2}=c^{2}-b^{2}+2bx-x^{2};}
a
2
=
c
2
−
b
2
+
2
b
x
;
{\displaystyle a^{2}=c^{2}-b^{2}+2bx;}
a
2
−
c
2
+
b
2
=
2
b
x
;
{\displaystyle a^{2}-c^{2}+b^{2}=2bx;}
x
=
a
2
−
c
2
+
b
2
2
b
=
(
14
)
2
−
(
14
)
2
+
(
30
)
2
2
30
=
30
2
30
=
30
2
=
2.738612788.
{\displaystyle x={\frac {a^{2}-c^{2}+b^{2}}{2b}}={\frac {({\sqrt {14}})^{2}-({\sqrt {14}})^{2}+({\sqrt {30}})^{2}}{2{\sqrt {30}}}}={\frac {30}{2{\sqrt {30}}}}={\frac {\sqrt {30}}{2}}=2.738612788.}
cos
θ
=
x
a
=
2.738612788
14
=
2.738612788
3.741657387
=
0.731925054.
{\displaystyle \cos \theta ={\frac {x}{a}}={\frac {2.738612788}{\sqrt {14}}}={\frac {2.738612788}{3.741657387}}=0.731925054.}
θ
=
arccos
0.731925054
=
0.749653438
{\displaystyle \theta =\arccos 0.731925054=0.749653438}
arba 42.95197812 laipsnio.
h
=
a
2
−
x
2
=
(
14
)
2
−
(
30
2
)
2
=
14
−
30
4
=
14
−
7.5
=
6.5
=
2.549509757.
{\displaystyle h={\sqrt {a^{2}-x^{2}}}={\sqrt {({\sqrt {14}})^{2}-({\frac {\sqrt {30}}{2}})^{2}}}={\sqrt {14-{\frac {30}{4}}}}={\sqrt {14-7.5}}={\sqrt {6.5}}=2.549509757.}
h
=
c
2
−
(
b
−
x
)
2
=
(
14
)
2
−
(
30
−
30
2
)
2
=
14
−
30
4
=
14
−
7.5
=
6.5
=
2.549509757.
{\displaystyle h={\sqrt {c^{2}-(b-x)^{2}}}={\sqrt {({\sqrt {14}})^{2}-({\sqrt {30}}-{\frac {\sqrt {30}}{2}})^{2}}}={\sqrt {14-{\frac {30}{4}}}}={\sqrt {14-7.5}}={\sqrt {6.5}}=2.549509757.}
sin
θ
=
h
a
=
6.5
14
=
2.549509757
3.741657387
=
0.681385143.
{\displaystyle \sin \theta ={\frac {h}{a}}={\frac {\sqrt {6.5}}{\sqrt {14}}}={\frac {2.549509757}{3.741657387}}=0.681385143.}
θ
=
arcsin
6.5
14
=
arcsin
0.681385143
=
0.749653438
{\displaystyle \theta =\arcsin {\frac {\sqrt {6.5}}{\sqrt {14}}}=\arcsin 0.681385143=0.749653438}
arba 42.95197812 laipsnio.
Trikampio ABC plotas yra
S
Δ
=
1
2
|
|
a
×
b
|
|
=
1
2
(
−
7
)
2
+
5
2
+
(
−
1
)
2
=
1
2
75
=
4
,
330127019.
{\displaystyle S_{\Delta }={\frac {1}{2}}||a\times b||={\frac {1}{2}}{\sqrt {(-7)^{2}+5^{2}+(-1)^{2}}}={\frac {1}{2}}{\sqrt {75}}=4,330127019.}
Trikampio ABC plotą randame taikydami Herono formulę:
p
=
P
2
=
a
+
b
+
c
2
=
14
+
30
+
14
2
=
6
,
480270174.
{\displaystyle p={\frac {P}{2}}={\frac {a+b+c}{2}}={\frac {{\sqrt {14}}+{\sqrt {30}}+{\sqrt {14}}}{2}}=6,480270174.}
S
Δ
=
p
(
p
−
a
)
(
p
−
b
)
(
p
−
c
)
=
{\displaystyle S_{\Delta }={\sqrt {p(p-a)(p-b)(p-c)}}=}
=
6
,
480270174
⋅
(
6
,
480270174
−
14
)
(
6
,
480270174
−
30
)
(
6
,
480270174
−
14
)
=
{\displaystyle ={\sqrt {6,480270174\cdot (6,480270174-{\sqrt {14}})(6,480270174-{\sqrt {30}})(6,480270174-{\sqrt {14}})}}=}
=
35
,
60196623
=
5
,
966738324.
{\displaystyle ={\sqrt {35,60196623}}=5,966738324.}
Dar budas pasitikrinti trikampio ABC plotą:
S
Δ
=
b
⋅
h
2
=
30
⋅
6.5
2
=
195
2
=
6
,
982120022.
{\displaystyle S_{\Delta }={b\cdot h \over 2}={{\sqrt {30}}\cdot {\sqrt {6.5}} \over 2}={{\sqrt {195}} \over 2}=6,982120022.}
Galbūt plotai ir kampai nesutampa skaičiuojant skirtingais būdais, nes trikampis ABC yra lygiašonis ir jam kosinusų teorema ar/ir kitos formulės netinka. Bet pasibraižius grafikus ir patikrinus kampus tarp vektorių įvairiais budais, buvo padaryta išvada, kad jokių budu atsakymas negali buti 42.95197812 laipsniai, o kažkurtai apie 18-20 laipsnių. Todėl kyla išvada, kad kosinusų teorema netinkama skaičiuoti kampams tų trikampių, kurie yra lygiašoniai.
Duoti vektoriai a =(4; 3; 0), b =(10; 0; 0). Rasime kampą tarp jų.
a
×
b
=
|
i
j
k
4
3
0
10
0
0
|
=
|
3
0
0
0
|
i
−
|
4
0
10
0
|
j
+
|
4
3
10
0
|
k
=
0
i
+
0
j
−
30
k
=
(
0
;
0
;
−
30
)
.
{\displaystyle \mathbf {a} \times \mathbf {b} ={\begin{vmatrix}i&j&k\\4&3&0\\10&0&0\end{vmatrix}}={\begin{vmatrix}3&0\\0&0\end{vmatrix}}i-{\begin{vmatrix}4&0\\10&0\end{vmatrix}}j+{\begin{vmatrix}4&3\\10&0\end{vmatrix}}k=0i+0j-30k=(0;0;-30).}
sin
θ
=
‖
a
×
b
‖
‖
a
‖
‖
b
‖
=
0
2
+
0
2
+
(
−
30
)
2
4
2
+
3
2
+
0
2
⋅
10
2
+
0
2
+
0
2
=
900
25
⋅
100
=
30
5
⋅
10
=
3
5
=
0
,
6.
{\displaystyle \sin \theta ={\frac {\|\mathbf {a} \times \mathbf {b} \|}{\|\mathbf {a} \|\|\mathbf {b} \|}}={\frac {\sqrt {0^{2}+0^{2}+(-30)^{2}}}{{\sqrt {4^{2}+3^{2}+0^{2}}}\cdot {\sqrt {10^{2}+0^{2}+0^{2}}}}}={\frac {\sqrt {900}}{{\sqrt {25}}\cdot {\sqrt {100}}}}={\frac {30}{5\cdot 10}}={\frac {3}{5}}=0,6.}
θ
=
arcsin
0
,
6
=
0.643501108
{\displaystyle \theta =\arcsin 0,6=0.643501108}
radiano arba 36,86989765 laipsnio.
Patikriname kitu budu:
cos
θ
=
a
⋅
b
|
|
a
|
|
⋅
|
|
b
|
|
=
4
⋅
10
+
3
⋅
0
+
0
⋅
0
4
2
+
3
2
+
0
2
⋅
10
2
+
0
2
+
0
2
=
40
25
⋅
100
=
40
5
⋅
10
=
4
5
=
0.8.
{\displaystyle \cos \theta ={\frac {\mathbf {a} \cdot \mathbf {b} }{||\mathbf {a} ||\cdot ||\mathbf {b} ||}}={\frac {4\cdot 10+3\cdot 0+0\cdot 0}{{\sqrt {4^{2}+3^{2}+0^{2}}}\cdot {\sqrt {10^{2}+0^{2}+0^{2}}}}}={\frac {40}{{\sqrt {25}}\cdot {\sqrt {100}}}}={\frac {40}{5\cdot 10}}={\frac {4}{5}}=0.8.}
θ
=
arccos
0.8
=
0.643501108
{\displaystyle \theta =\arccos 0.8=0.643501108}
radiano arba 36,86989765 laipsnio.
Pavyzdžiui, duoti vektoriai a =(3; 5; 11), b =(7; 8; 2).
a
×
b
=
|
i
j
k
3
5
11
7
8
2
|
=
|
5
11
8
2
|
i
−
|
3
11
7
2
|
j
+
|
3
5
7
8
|
k
=
{\displaystyle \mathbf {a} \times \mathbf {b} ={\begin{vmatrix}i&j&k\\3&5&11\\7&8&2\end{vmatrix}}={\begin{vmatrix}5&11\\8&2\end{vmatrix}}i-{\begin{vmatrix}3&11\\7&2\end{vmatrix}}j+{\begin{vmatrix}3&5\\7&8\end{vmatrix}}k=}
=
(
−
1
)
1
+
1
⋅
(
5
⋅
2
−
8
⋅
11
)
i
+
(
−
1
)
1
+
2
⋅
(
3
⋅
2
−
11
⋅
7
)
j
+
(
−
1
)
1
+
3
⋅
(
3
⋅
8
−
5
⋅
7
)
k
=
−
7
i
+
5
j
−
1
k
=
(
−
78
;
71
;
−
11
)
.
{\displaystyle =(-1)^{1+1}\cdot (5\cdot 2-8\cdot 11)i+(-1)^{1+2}\cdot (3\cdot 2-11\cdot 7)j+(-1)^{1+3}\cdot (3\cdot 8-5\cdot 7)k=-7i+5j-1k=(-78;71;-11).}
sin
θ
=
‖
a
×
b
‖
‖
a
‖
‖
b
‖
=
(
−
78
)
2
+
71
2
+
(
−
11
)
2
3
2
+
5
2
+
11
2
⋅
7
2
+
8
2
+
2
2
=
6048
+
5041
+
121
9
+
25
+
121
⋅
49
+
64
+
4
=
{\displaystyle \sin \theta ={\frac {\|\mathbf {a} \times \mathbf {b} \|}{\|\mathbf {a} \|\|\mathbf {b} \|}}={\frac {\sqrt {(-78)^{2}+71^{2}+(-11)^{2}}}{{\sqrt {3^{2}+5^{2}+11^{2}}}\cdot {\sqrt {7^{2}+8^{2}+2^{2}}}}}={\frac {\sqrt {6048+5041+121}}{{\sqrt {9+25+121}}\cdot {\sqrt {49+64+4}}}}=}
=
11246
155
⋅
117
=
11246
18135
=
106
,
0471593
134
,
6662541
=
0.787481318.
{\displaystyle ={\frac {\sqrt {11246}}{{\sqrt {155}}\cdot {\sqrt {117}}}}={\frac {\sqrt {11246}}{\sqrt {18135}}}={\frac {106,0471593}{134,6662541}}=0.787481318.}
θ
=
arcsin
0.786219889
=
0.906711738
{\displaystyle \theta =\arcsin 0.786219889=0.906711738}
radiano arba 51,95075583 laipsnio.
Pagal Pitagoro teoremą patikriname atsakymą. Tiek vektorius a , tiek vektorius b išeina iš taško (x; y; z)=(0; 0; 0). Vadinasi vektorius a ir vektorius b liečiasi tame pačiame taške, kurį pavadiname A . Taškas B turi koordinates (3; 5; 11), o taškas C turi koordinates (7; 8; 2). Tokiu budu ||a ||=AB=a, o ||b ||=AC=b. Turime trikampį ABC. Iš taško C(7; 8; 2) nuleista aukštinė h į trikampio kraštinę AB=a, susikirtimo tašką aukštinės h su kraštine AB, pavadinkime D . Kraštinė AD=x, o kraštinė DB=||a ||-x=a-x. BC=c.
c
=
(
7
−
3
)
2
+
(
8
−
5
)
2
+
(
2
−
11
)
2
=
4
2
+
3
2
+
(
−
9
)
2
=
16
+
9
+
81
=
106
=
10
,
29563014.
{\displaystyle c={\sqrt {(7-3)^{2}+(8-5)^{2}+(2-11)^{2}}}={\sqrt {4^{2}+3^{2}+(-9)^{2}}}={\sqrt {16+9+81}}={\sqrt {106}}=10,29563014.}
a
=
‖
a
‖
=
3
2
+
5
2
+
11
2
=
9
+
25
+
121
=
155
=
12
,
4498996.
{\displaystyle a=\|\mathbf {a} \|={\sqrt {3^{2}+5^{2}+11^{2}}}={\sqrt {9+25+121}}={\sqrt {155}}=12,4498996.}
b
=
‖
b
‖
=
7
2
+
8
2
+
2
2
=
49
+
64
+
4
=
117
=
10
,
81665383.
{\displaystyle b=\|\mathbf {b} \|={\sqrt {7^{2}+8^{2}+2^{2}}}={\sqrt {49+64+4}}={\sqrt {117}}=10,81665383.}
h
=
b
2
−
x
2
=
(
117
)
2
−
x
2
=
117
−
x
2
.
{\displaystyle h={\sqrt {b^{2}-x^{2}}}={\sqrt {({\sqrt {117}})^{2}-x^{2}}}={\sqrt {117-x^{2}}}.}
h
=
c
2
−
(
a
−
x
)
2
=
(
106
)
2
−
(
155
−
x
)
2
=
14
−
(
155
−
2
x
155
+
x
2
)
.
{\displaystyle h={\sqrt {c^{2}-(a-x)^{2}}}={\sqrt {({\sqrt {106}})^{2}-({\sqrt {155}}-x)^{2}}}={\sqrt {14-(155-2x{\sqrt {155}}+x^{2})}}.}
b
2
−
x
2
=
c
2
−
a
−
x
)
2
;
{\displaystyle {\sqrt {b^{2}-x^{2}}}={\sqrt {c^{2}-a-x)^{2}}};}
b
2
−
x
2
=
c
2
−
(
a
−
x
)
2
{\displaystyle b^{2}-x^{2}=c^{2}-(a-x)^{2}}
;
b
2
−
x
2
=
c
2
−
(
a
2
−
2
a
x
+
x
2
)
;
{\displaystyle b^{2}-x^{2}=c^{2}-(a^{2}-2ax+x^{2});}
b
2
−
x
2
=
c
2
−
a
2
+
2
a
x
−
x
2
;
{\displaystyle b^{2}-x^{2}=c^{2}-a^{2}+2ax-x^{2};}
b
2
=
c
2
−
a
2
+
2
a
x
;
{\displaystyle b^{2}=c^{2}-a^{2}+2ax;}
b
2
−
c
2
+
a
2
=
2
a
x
;
{\displaystyle b^{2}-c^{2}+a^{2}=2ax;}
x
=
b
2
−
c
2
+
a
2
2
a
=
(
117
)
2
−
(
106
)
2
+
(
155
)
2
2
155
=
117
−
106
+
155
2
155
=
166
2
155
=
83
155
=
6.66672043.
{\displaystyle x={\frac {b^{2}-c^{2}+a^{2}}{2a}}={\frac {({\sqrt {117}})^{2}-({\sqrt {106}})^{2}+({\sqrt {155}})^{2}}{2{\sqrt {155}}}}={\frac {117-106+155}{2{\sqrt {155}}}}={\frac {166}{2{\sqrt {155}}}}={\frac {83}{\sqrt {155}}}=6.66672043.}
cos
θ
=
x
b
=
83
155
117
=
83
18135
=
0.616338521.
{\displaystyle \cos \theta ={\frac {x}{b}}={\frac {\frac {83}{\sqrt {155}}}{\sqrt {117}}}={\frac {83}{\sqrt {18135}}}=0.616338521.}
θ
=
arccos
0.616338521
=
0.906711738
{\displaystyle \theta =\arccos 0.616338521=0.906711738}
arba 51.95075583 laipsnio.
h
=
b
2
−
x
2
=
(
117
)
2
−
(
83
155
)
2
=
{\displaystyle h={\sqrt {b^{2}-x^{2}}}={\sqrt {({\sqrt {117}})^{2}-({\frac {83}{\sqrt {155}}})^{2}}}=}
=
117
−
6889
155
=
117
−
44.44516129
=
72.55483871
=
8.517912814.
{\displaystyle ={\sqrt {117-{\frac {6889}{155}}}}={\sqrt {117-44.44516129}}={\sqrt {72.55483871}}=8.517912814.}
h
=
c
2
−
(
a
−
x
)
2
=
(
106
)
2
−
(
155
−
83
155
)
2
=
106
−
(
12.4498996
−
6.66672043
)
2
=
{\displaystyle h={\sqrt {c^{2}-(a-x)^{2}}}={\sqrt {({\sqrt {106}})^{2}-({\sqrt {155}}-{\frac {83}{\sqrt {155}}})^{2}}}={\sqrt {106-(12.4498996-6.66672043)^{2}}}=}
106
−
5.783179168
2
=
106
−
33.44516129
=
72.55483871
=
8.517912814.
{\displaystyle {\sqrt {106-5.783179168^{2}}}={\sqrt {106-33.44516129}}={\sqrt {72.55483871}}=8.517912814.}
sin
θ
=
h
b
=
8.517912814
117
=
8.517912814
10.81665383
=
0.787481318.
{\displaystyle \sin \theta ={\frac {h}{b}}={\frac {8.517912814}{\sqrt {117}}}={\frac {8.517912814}{10.81665383}}=0.787481318.}
θ
=
arcsin
0.787481318
=
0.906711738
{\displaystyle \theta =\arcsin 0.787481318=0.906711738}
arba 51.95075583 laipsnio.
Trikampio ABC plotas yra
S
Δ
=
1
2
|
|
a
×
b
|
|
=
1
2
(
−
78
)
2
+
71
2
+
(
−
11
)
2
=
1
2
11246
=
53.02357966.
{\displaystyle S_{\Delta }={\frac {1}{2}}||a\times b||={\frac {1}{2}}{\sqrt {(-78)^{2}+71^{2}+(-11)^{2}}}={\frac {1}{2}}{\sqrt {11246}}=53.02357966.}
Trikampio ABC plotą randame taikydami Herono formulę:
p
=
P
2
=
a
+
b
+
c
2
=
155
+
117
+
106
2
=
16.78109178.
{\displaystyle p={\frac {P}{2}}={\frac {a+b+c}{2}}={\frac {{\sqrt {155}}+{\sqrt {117}}+{\sqrt {106}}}{2}}=16.78109178.}
S
Δ
=
p
(
p
−
a
)
(
p
−
b
)
(
p
−
c
)
=
{\displaystyle S_{\Delta }={\sqrt {p(p-a)(p-b)(p-c)}}=}
=
16.78109178
⋅
(
16.78109178
−
155
)
(
16.78109178
−
117
)
(
16.78109178
−
106
)
=
{\displaystyle ={\sqrt {16.78109178\cdot (16.78109178-{\sqrt {155}})(16.78109178-{\sqrt {117}})(16.78109178-{\sqrt {106}})}}=}
=
16.78109178
⋅
4.331192185
⋅
5.964437956
⋅
6.485461642
=
{\displaystyle ={\sqrt {16.78109178\cdot 4.331192185\cdot 5.964437956\cdot 6.485461642}}=}
=
2811.5
=
53.02357966.
{\displaystyle ={\sqrt {2811.5}}=53.02357966.}
Dar budas pasitikrinti trikampio ABC plotą:
S
Δ
=
a
⋅
h
2
=
155
⋅
8.517912814
2
=
53.02357966.
{\displaystyle S_{\Delta }={a\cdot h \over 2}={{\sqrt {155}}\cdot 8.517912814 \over 2}=53.02357966.}
Vektorinė vektorių sandauga
keisti
Grafinis vektorinės vektorių sandaugos pavaizdavimas
Dviejų vektorių vektorinės sandaugos rezultatas yra vektorius status tiems dviems vektoriams. Jei duoti vektoriai
a
=
(
a
1
;
a
2
;
a
3
)
{\displaystyle \mathbf {a} =(a_{1};a_{2};a_{3})}
ir
b
=
(
b
1
;
b
2
;
b
3
)
,
{\displaystyle \mathbf {b} =(b_{1};b_{2};b_{3}),}
tai vektorinė sandauga vektorių a ir b duos trečią vektorių
n
,
{\displaystyle \mathbf {n} ,}
kuris bus status vektoriui a ir vektoriui b .
n
=
a
×
b
=
|
i
j
k
a
1
a
2
a
3
b
1
b
2
b
3
|
=
|
a
2
a
3
b
2
b
3
|
i
−
|
a
1
a
3
b
1
b
3
|
j
+
|
a
1
a
2
b
1
b
2
|
k
=
{\displaystyle \mathbf {n} =\mathbf {a} \times \mathbf {b} ={\begin{vmatrix}\mathbf {i} &\mathbf {j} &\mathbf {k} \\a_{1}&a_{2}&a_{3}\\b_{1}&b_{2}&b_{3}\\\end{vmatrix}}={\begin{vmatrix}a_{2}&a_{3}\\b_{2}&b_{3}\end{vmatrix}}\mathbf {i} -{\begin{vmatrix}a_{1}&a_{3}\\b_{1}&b_{3}\end{vmatrix}}\mathbf {j} +{\begin{vmatrix}a_{1}&a_{2}\\b_{1}&b_{2}\end{vmatrix}}\mathbf {k} =}
=
i
a
2
b
3
+
j
a
3
b
1
+
k
a
1
b
2
−
i
a
3
b
2
−
j
a
1
b
3
−
k
a
2
b
1
=
{\displaystyle =\mathbf {i} a_{2}b_{3}+\mathbf {j} a_{3}b_{1}+\mathbf {k} a_{1}b_{2}-\mathbf {i} a_{3}b_{2}-\mathbf {j} a_{1}b_{3}-\mathbf {k} a_{2}b_{1}=}
=
i
(
a
2
b
3
−
a
3
b
2
)
+
j
(
a
3
b
1
−
a
1
b
3
)
+
k
(
a
1
b
2
−
a
2
b
1
)
=
{\displaystyle =\mathbf {i} (a_{2}b_{3}-a_{3}b_{2})+\mathbf {j} (a_{3}b_{1}-a_{1}b_{3})+\mathbf {k} (a_{1}b_{2}-a_{2}b_{1})=}
=
(
a
2
b
3
−
a
3
b
2
;
a
3
b
1
−
a
1
b
3
;
a
1
b
2
−
a
2
b
1
)
.
{\displaystyle =(a_{2}b_{3}-a_{3}b_{2};a_{3}b_{1}-a_{1}b_{3};a_{1}b_{2}-a_{2}b_{1}).}
Vektorinė sandauga a × b gali būti interpretuojamas kaip plotas lygiagretainio , sudaryto iš kraštinių (arba tiesių) ||a || ir ||b ||.
Pavyzdžiui, duoti vektoriai a=(1; -2; 2), b=(3; 0; -4). Jų vektorinė sandauga lygi
a
×
b
=
|
i
j
k
1
−
2
2
3
0
−
4
|
=
|
−
2
2
0
−
4
|
i
−
|
1
2
3
−
4
|
j
+
|
1
−
2
3
0
|
k
=
8
i
+
10
j
+
6
k
=
(
8
;
10
;
6
)
.
{\displaystyle a\times b={\begin{vmatrix}i&j&k\\1&-2&2\\3&0&-4\end{vmatrix}}={\begin{vmatrix}-2&2\\0&-4\end{vmatrix}}i-{\begin{vmatrix}1&2\\3&-4\end{vmatrix}}j+{\begin{vmatrix}1&-2\\3&0\end{vmatrix}}k=8i+10j+6k=(8;10;6).}
Čia skaičiuodami vektorinę sandaugą panaudojome determinantą .
Vektorinės sandaugos modulis yra lygiagretainio plotas, kurį sudaro du vektoriai:
S
=
|
|
a
×
b
|
|
=
8
2
+
10
2
+
6
2
=
200
=
10
2
.
{\displaystyle S=||a\times b||={\sqrt {8^{2}+10^{2}+6^{2}}}={\sqrt {200}}=10{\sqrt {2}}.}
Trikampio plotas yra
S
Δ
=
1
2
|
|
a
×
b
|
|
=
5
2
.
{\displaystyle S_{\Delta }={\frac {1}{2}}||a\times b||=5{\sqrt {2}}.}
Taikydami Herono formulę patikrinsime ar trikampio plotas
S
Δ
{\displaystyle S_{\Delta }}
surastas teisingai.
|
|
a
|
|
=
1
2
+
(
−
2
)
2
+
2
2
=
9
=
3
,
{\displaystyle ||a||={\sqrt {1^{2}+(-2)^{2}+2^{2}}}={\sqrt {9}}=3,}
|
|
b
|
|
=
3
2
+
0
2
+
(
−
4
)
2
=
25
=
5.
{\displaystyle ||b||={\sqrt {3^{2}+0^{2}+(-4)^{2}}}={\sqrt {25}}=5.}
Atkarpos f ilgis iš taško a=(1; -2; 2) iki taško b=(3; 0; -4) yra lygus
f
=
(
1
−
3
)
2
+
(
−
2
−
0
)
2
+
(
2
−
(
−
4
)
)
2
=
4
+
4
+
36
=
44
=
2
11
=
6.633249581.
{\displaystyle f={\sqrt {(1-3)^{2}+(-2-0)^{2}+(2-(-4))^{2}}}={\sqrt {4+4+36}}={\sqrt {44}}=2{\sqrt {11}}=6.633249581.}
Pagal Herono formulę randame trikampio pusperimetrį
p
=
3
+
5
+
2
11
2
=
4
+
11
=
7.31662479.
{\displaystyle p={3+5+2{\sqrt {11}} \over 2}=4+{\sqrt {11}}=7.31662479.}
S
Δ
=
p
(
p
−
a
)
(
p
−
b
)
(
p
−
f
)
=
(
4
+
11
)
(
7.31662479
−
3
)
(
7.31662479
−
5
)
(
4
+
11
−
2
11
)
=
{\displaystyle S_{\Delta }={\sqrt {p(p-a)(p-b)(p-f)}}={\sqrt {(4+{\sqrt {11}})(7.31662479-3)(7.31662479-5)(4+{\sqrt {11}}-2{\sqrt {11}})}}=}
=
7.31662479
⋅
4.31662479
⋅
2.31662479
⋅
(
4
−
11
)
=
50
=
5
2
=
7.071067812.
{\displaystyle ={\sqrt {7.31662479\cdot 4.31662479\cdot 2.31662479\cdot (4-{\sqrt {11}})}}={\sqrt {50}}=5{\sqrt {2}}=7.071067812.}
Dedamųjų daugyba :
i
×
j
=
−
(
j
×
i
)
=
k
;
{\displaystyle i\times j=-(j\times i)=k;}
j
×
k
=
−
(
k
×
j
)
=
i
;
{\displaystyle j\times k=-(k\times j)=i;}
k
×
i
=
−
(
i
×
k
)
=
j
.
{\displaystyle k\times i=-(i\times k)=j.}
i
×
i
=
j
×
j
=
k
×
k
=
0.
{\displaystyle i\times i=j\times j=k\times k=0.}
Rasime
a
×
b
,
{\displaystyle a\times b,}
jei a=2i-3j+5k=(2; -3; 5), b=4i+2j-6k=(4; 2; -6).
a
×
b
=
(
2
i
−
3
j
+
5
k
)
×
(
4
i
+
2
j
−
6
k
)
=
8
i
i
+
4
i
j
−
12
i
k
−
12
j
k
−
6
j
j
+
18
j
k
+
20
k
i
+
10
k
j
−
30
k
k
=
{\displaystyle a\times b=(2i-3j+5k)\times (4i+2j-6k)=8ii+4ij-12ik-12jk-6jj+18jk+20ki+10kj-30kk=}
=
4
k
+
12
j
+
12
k
+
18
i
+
20
j
−
10
i
=
8
i
+
32
j
+
16
k
=
(
8
;
32
;
16
)
.
{\displaystyle =4k+12j+12k+18i+20j-10i=8i+32j+16k=(8;32;16).}
a
×
b
=
|
i
j
k
2
−
3
5
4
2
−
6
|
=
|
−
3
5
2
−
6
|
i
−
|
2
5
4
−
6
|
j
+
|
2
−
3
4
2
|
k
=
8
i
+
32
j
+
16
k
=
(
8
;
32
;
16
)
.
{\displaystyle a\times b={\begin{vmatrix}i&j&k\\2&-3&5\\4&2&-6\end{vmatrix}}={\begin{vmatrix}-3&5\\2&-6\end{vmatrix}}i-{\begin{vmatrix}2&5\\4&-6\end{vmatrix}}j+{\begin{vmatrix}2&-3\\4&2\end{vmatrix}}k=8i+32j+16k=(8;32;16).}
Apskaičiuosime trikampio su viršūnėmis taškuose A(-1; 0; 2), B(1; -2; 5), C(3; 0; -4) plotą.
a=AB=(1-(-1); -2-0; 5-2)=(2; -2; 3); b=AC=(3-(-1); 0-0; -4-2)=(4; 0; -6);
a
×
b
=
|
i
j
k
2
−
2
3
4
0
−
6
|
=
|
−
2
3
0
−
6
|
i
−
|
2
3
4
−
6
|
j
+
|
2
−
2
4
0
|
k
=
12
i
+
24
j
+
8
k
=
(
12
;
24
;
8
)
.
{\displaystyle a\times b={\begin{vmatrix}i&j&k\\2&-2&3\\4&0&-6\end{vmatrix}}={\begin{vmatrix}-2&3\\0&-6\end{vmatrix}}i-{\begin{vmatrix}2&3\\4&-6\end{vmatrix}}j+{\begin{vmatrix}2&-2\\4&0\end{vmatrix}}k=12i+24j+8k=(12;24;8).}
|
|
a
×
b
|
|
=
12
2
+
24
2
+
8
2
=
784
=
28.
S
Δ
=
1
2
|
|
a
×
b
|
|
=
1
2
⋅
28
=
14.
{\displaystyle ||a\times b||={\sqrt {12^{2}+24^{2}+8^{2}}}={\sqrt {784}}=28.\;S_{\Delta }={\frac {1}{2}}||a\times b||={\frac {1}{2}}\cdot 28=14.}
Trikampio ABC viršunės yra taškai A(1; -1; 2), B(5; -6; 2) ir C(1; 3; -1). Apskaičiuosime šio trikampio plotą ir aukštinės h , nuleistos iš viršunės B į kraštinę AC, ilgį.
Žinome, kad
S
Δ
A
B
C
=
1
2
|
|
A
B
×
A
C
|
|
.
{\displaystyle S_{\Delta ABC}={\frac {1}{2}}||AB\times AC||.}
Randame vektorių AB ir AC koordinates bei vektorinę sandaugą: AB=(4; 5; 0), AC=(0; 4; -3),
A
B
×
A
C
=
|
i
j
k
4
−
5
0
0
4
−
3
|
=
|
−
5
0
4
−
3
|
i
−
|
4
0
0
−
3
|
j
+
|
4
−
5
0
4
|
k
=
15
i
−
(
−
12
)
j
+
16
k
=
(
15
;
12
;
16
)
.
{\displaystyle AB\times AC={\begin{vmatrix}i&j&k\\4&-5&0\\0&4&-3\end{vmatrix}}={\begin{vmatrix}-5&0\\4&-3\end{vmatrix}}i-{\begin{vmatrix}4&0\\0&-3\end{vmatrix}}j+{\begin{vmatrix}4&-5\\0&4\end{vmatrix}}k=15i-(-12)j+16k=(15;12;16).}
Apskaičiuojame lygiagretainio plotą:
|
|
A
B
×
A
C
|
|
=
15
2
+
12
2
+
16
2
=
625
=
25.
{\displaystyle ||AB\times AC||={\sqrt {15^{2}+12^{2}+16^{2}}}={\sqrt {625}}=25.}
Tada trikampio ABC plotas bus lygus
S
Δ
A
B
C
=
1
2
⋅
25
=
12.5.
{\displaystyle S_{\Delta ABC}={\frac {1}{2}}\cdot 25=12.5.}
Norėdami rasti trikampio aukšinę h , pritaikykime kitą trikampio ploto formulę:
S
Δ
A
B
C
=
1
2
|
|
A
C
|
|
⋅
h
.
{\displaystyle S_{\Delta ABC}={\frac {1}{2}}||AC||\cdot h.}
Sulyginę formules, gauname:
1
2
|
|
A
B
×
A
C
|
|
=
1
2
|
|
A
C
|
|
⋅
h
.
{\displaystyle {\frac {1}{2}}||AB\times AC||={\frac {1}{2}}||AC||\cdot h.}
Iš čia trikampio ABC aukšinė
h
=
|
|
A
B
×
A
C
|
|
|
|
A
C
|
|
=
25
5
=
5
,
{\displaystyle h={\frac {||AB\times AC||}{||AC||}}={\frac {25}{5}}=5,}
kadangi
|
|
A
C
|
|
=
0
2
+
4
2
+
(
−
3
)
2
=
0
+
16
+
9
=
5.
{\displaystyle ||AC||={\sqrt {0^{2}+4^{2}+(-3)^{2}}}={\sqrt {0+16+9}}=5.}
Apskaičiuosime trikampio plotą, kai žinomi jo viršunių taškai B(5; 2; 6), C(-1; 3; 4) ir D(7; 3; -1).
Trikampio kraštinių vektoriai yra šie: BC=(5-(-1); 2-3; 6-4)=(6; -1; 2); BD=(5-7; 2-3; 6-(-1))=(-2; -1; 7); CD=(-1-7; 3-3; 4-(-1))=(-8; 0; 5). Trikampio kraštinių ilgiai yra šie:
|
|
B
C
|
|
=
6
2
+
(
−
1
)
2
+
2
2
=
36
+
1
+
4
=
41
=
6.403124237
;
{\displaystyle ||BC||={\sqrt {6^{2}+(-1)^{2}+2^{2}}}={\sqrt {36+1+4}}={\sqrt {41}}=6.403124237;}
|
|
B
D
|
|
=
(
−
2
)
2
+
(
−
1
)
2
+
7
2
=
4
+
1
+
49
=
54
=
7.348469228
;
{\displaystyle ||BD||={\sqrt {(-2)^{2}+(-1)^{2}+7^{2}}}={\sqrt {4+1+49}}={\sqrt {54}}=7.348469228;}
|
|
C
D
|
|
=
(
−
8
)
2
+
0
2
+
5
2
=
64
+
0
+
25
=
89
=
9.433981132
;
{\displaystyle ||CD||={\sqrt {(-8)^{2}+0^{2}+5^{2}}}={\sqrt {64+0+25}}={\sqrt {89}}=9.433981132;}
Kadangi
B
C
×
B
D
=
|
i
j
k
6
−
1
2
−
2
−
1
7
|
=
i
⋅
(
−
1
)
⋅
7
+
j
⋅
2
⋅
(
−
2
)
+
k
⋅
6
⋅
(
−
1
)
−
i
⋅
2
⋅
(
−
1
)
−
j
⋅
6
⋅
7
−
k
⋅
(
−
1
)
⋅
(
−
2
)
=
{\displaystyle BC\times BD={\begin{vmatrix}i&j&k\\6&-1&2\\-2&-1&7\end{vmatrix}}=i\cdot (-1)\cdot 7+j\cdot 2\cdot (-2)+k\cdot 6\cdot (-1)-i\cdot 2\cdot (-1)-j\cdot 6\cdot 7-k\cdot (-1)\cdot (-2)=}
=
−
7
i
+
2
i
−
4
j
−
42
j
−
6
k
−
2
k
=
−
5
i
−
46
j
−
8
k
=
(
−
5
;
−
46
;
−
8
)
,
{\displaystyle =-7i+2i-4j-42j-6k-2k=-5i-46j-8k=(-5;-46;-8),}
tai trikampio plotas lygus:
S
Δ
=
1
2
⋅
|
|
B
C
×
B
D
|
|
=
1
2
⋅
(
−
5
)
2
+
(
−
46
)
2
+
(
−
8
)
2
=
25
+
2116
+
64
2
=
2205
2
=
23.47871376.
{\displaystyle S_{\Delta }={1 \over 2}\cdot ||BC\times BD||={1 \over 2}\cdot {\sqrt {(-5)^{2}+(-46)^{2}+(-8)^{2}}}={{\sqrt {25+2116+64}} \over 2}={{\sqrt {2205}} \over 2}=23.47871376.}
Pagal Herono formulę pasitikriname ar trikampio plotas gautas teisingai.
Randame trikampio pusperimetrį
p
=
|
|
B
C
|
|
+
|
|
B
D
|
|
+
|
|
C
D
|
|
2
=
41
+
54
+
89
2
=
11.5927873.
{\displaystyle p={||BC||+||BD||+||CD|| \over 2}={{\sqrt {41}}+{\sqrt {54}}+{\sqrt {89}} \over 2}=11.5927873.}
S
Δ
=
p
(
p
−
|
|
B
C
|
|
)
(
p
−
|
|
B
D
|
|
)
(
p
−
|
|
C
D
|
|
)
=
{\displaystyle S_{\Delta }={\sqrt {p(p-||BC||)(p-||BD||)(p-||CD||)}}=}
=
11.5927873
(
11.5927873
−
41
)
(
11.5927873
−
54
)
(
11.5927873
−
89
)
=
{\displaystyle ={\sqrt {11.5927873(11.5927873-{\sqrt {41}})(11.5927873-{\sqrt {54}})(11.5927873-{\sqrt {89}})}}=}
=
11.5927873
⋅
5.189663062
⋅
4.244318071
⋅
2.158806167
=
551.2500001
=
23.47871377.
{\displaystyle ={\sqrt {11.5927873\cdot 5.189663062\cdot 4.244318071\cdot 2.158806167}}={\sqrt {551.2500001}}=23.47871377.}
Trikampio plotą galima surasti ir su tokia formule:
S
Δ
=
1
2
⋅
(
x
1
⋅
y
2
−
x
2
⋅
y
1
)
2
+
(
x
1
⋅
z
2
−
x
2
⋅
z
1
)
2
+
(
y
1
⋅
z
2
−
y
2
⋅
z
1
)
2
=
1
2
⋅
(
6
⋅
(
−
1
)
−
(
−
2
)
⋅
(
−
1
)
)
2
+
(
6
⋅
7
−
(
−
2
)
⋅
2
)
2
+
(
(
−
1
)
⋅
7
−
(
−
1
)
⋅
2
)
2
=
{\displaystyle S_{\Delta }={\frac {1}{2}}\cdot {\sqrt {(x_{1}\cdot y_{2}-x_{2}\cdot y_{1})^{2}+(x_{1}\cdot z_{2}-x_{2}\cdot z_{1})^{2}+(y_{1}\cdot z_{2}-y_{2}\cdot z_{1})^{2}}}={\frac {1}{2}}\cdot {\sqrt {(6\cdot (-1)-(-2)\cdot (-1))^{2}+(6\cdot 7-(-2)\cdot 2)^{2}+((-1)\cdot 7-(-1)\cdot 2)^{2}}}=}
=
1
2
⋅
(
−
6
−
2
)
2
+
(
42
+
4
)
2
+
(
−
7
+
2
)
2
=
1
2
⋅
(
−
8
)
2
+
46
2
+
(
−
5
)
2
=
1
2
⋅
64
+
2116
+
25
=
1
2
2205
=
23.47871376
,
{\displaystyle ={\frac {1}{2}}\cdot {\sqrt {(-6-2)^{2}+(42+4)^{2}+(-7+2)^{2}}}={\frac {1}{2}}\cdot {\sqrt {(-8)^{2}+46^{2}+(-5)^{2}}}={\frac {1}{2}}\cdot {\sqrt {64+2116+25}}={\frac {1}{2}}{\sqrt {2205}}=23.47871376,}
kur
B
C
=
(
x
1
;
y
1
;
z
1
)
=
(
6
;
−
1
;
2
)
{\displaystyle BC=(x_{1};y_{1};z_{1})=(6;-1;2)}
,
B
D
=
(
x
2
;
y
2
;
z
2
)
=
(
−
2
;
−
1
;
7
)
{\displaystyle BD=(x_{2};y_{2};z_{2})=(-2;-1;7)}
.
Apskaičiuosime lygiagretainio plotą, kai turime vektorius OA =a =(5; 3; 0) ir OB =b =(4; 7; 0). Koordinačių pradžios taškas yra O (0; 0; 0).
a
×
b
=
|
i
j
k
5
3
0
4
7
0
|
=
|
3
0
7
0
|
i
−
|
5
0
4
0
|
j
+
|
5
3
4
7
|
k
=
i
(
3
⋅
0
−
0
⋅
7
)
−
j
(
5
⋅
0
−
0
⋅
4
)
+
k
(
5
⋅
7
−
3
⋅
4
)
=
0
i
+
0
j
+
(
35
−
12
)
k
=
0
i
+
0
j
+
23
k
=
(
0
;
0
;
23
)
.
{\displaystyle a\times b={\begin{vmatrix}i&j&k\\5&3&0\\4&7&0\end{vmatrix}}={\begin{vmatrix}3&0\\7&0\end{vmatrix}}i-{\begin{vmatrix}5&0\\4&0\end{vmatrix}}j+{\begin{vmatrix}5&3\\4&7\end{vmatrix}}k=i(3\cdot 0-0\cdot 7)-j(5\cdot 0-0\cdot 4)+k(5\cdot 7-3\cdot 4)=0i+0j+(35-12)k=0i+0j+23k=(0;0;23).}
S
=
‖
a
×
b
‖
=
0
2
+
0
2
+
23
2
=
529
=
23.
{\displaystyle S=\|a\times b\|={\sqrt {0^{2}+0^{2}+23^{2}}}={\sqrt {529}}=23.}
Dvimatėse koordinatėse galima taikyti ir trumpesnę formulę lygiagretainio arba trikampio plotui:
S
=
|
x
1
⋅
y
2
−
x
2
⋅
y
1
|
=
|
5
⋅
7
−
4
⋅
3
|
=
|
35
−
12
|
=
|
23
|
=
23
;
{\displaystyle S=|x_{1}\cdot y_{2}-x_{2}\cdot y_{1}|=|5\cdot 7-4\cdot 3|=|35-12|=|23|=23;}
S
Δ
=
|
x
1
⋅
y
2
−
x
2
⋅
y
1
|
2
=
23
2
=
11.5.
{\displaystyle S_{\Delta }={\frac {|x_{1}\cdot y_{2}-x_{2}\cdot y_{1}|}{2}}={\frac {23}{2}}=11.5.}
Trimatėms koordinatėms alternatyvi formulė yra tokia, kad surasti lygiagretainio plotą:
S
=
(
x
1
⋅
y
2
−
x
2
⋅
y
1
)
2
+
(
x
1
⋅
z
2
−
x
2
⋅
z
1
)
2
+
(
y
1
⋅
z
2
−
y
2
⋅
z
1
)
2
.
{\displaystyle S={\sqrt {(x_{1}\cdot y_{2}-x_{2}\cdot y_{1})^{2}+(x_{1}\cdot z_{2}-x_{2}\cdot z_{1})^{2}+(y_{1}\cdot z_{2}-y_{2}\cdot z_{1})^{2}}}.}
Turime dvi tiesių atkarpas: OA ir OB . Taškas O (0; 0; 0) yra koordinačių pradžios taškas. Taškas A (3; 5; 1) yra vektorius a =(3; 5; 1). Taškas B (5; 3; 1) yra vektorius b =(5; 3; 1). Vektorius a yra tiesės atkarpa nuo taško O (0; 0; 0) iki taško A (3; 5; 1). Vektorius b yra tiesės atkarpa nuo taško O (0; 0; 0) iki taško B (5; 3; 1). Sudauginę vektorine vektorių sandauga vektorius a ir b , gausime jiems statų vektorių c . Taigi, taško C , kuris su tašku O sudaro atkarpą statmeną atkarpoms OA ir OB , koordinatės yra:
c
=
a
×
b
=
|
i
j
k
3
5
1
5
3
1
|
=
|
5
1
3
1
|
i
−
|
3
1
5
1
|
j
+
|
3
5
5
3
|
k
=
{\displaystyle \mathbf {c} =\mathbf {a} \times \mathbf {b} ={\begin{vmatrix}\mathbf {i} &\mathbf {j} &\mathbf {k} \\3&5&1\\5&3&1\\\end{vmatrix}}={\begin{vmatrix}5&1\\3&1\end{vmatrix}}\mathbf {i} -{\begin{vmatrix}3&1\\5&1\end{vmatrix}}\mathbf {j} +{\begin{vmatrix}3&5\\5&3\end{vmatrix}}\mathbf {k} =}
=
i
(
5
⋅
1
−
1
⋅
3
)
−
j
(
3
⋅
1
−
1
⋅
5
)
+
k
(
3
⋅
3
−
5
⋅
5
)
=
i
(
5
−
3
)
−
j
(
3
−
5
)
+
k
(
9
−
25
)
=
{\displaystyle =\mathbf {i} (5\cdot 1-1\cdot 3)-\mathbf {j} (3\cdot 1-1\cdot 5)+\mathbf {k} (3\cdot 3-5\cdot 5)=\mathbf {i} (5-3)-\mathbf {j} (3-5)+\mathbf {k} (9-25)=}
=
2
i
+
2
j
−
16
k
=
(
2
;
2
;
−
16
)
.
{\displaystyle =2\mathbf {i} +2\mathbf {j} -16\mathbf {k} =(2;2;-16).}
Gavome tašką C (2; 2; -16).
Įsitikiname, kad kampas tarp vektoriaus a =(3; 5; 1) ir vektoriaus c =(2; 2; -16) yra lygus 90 laipsnių:
cos
α
=
a
⋅
b
‖
a
‖
⋅
‖
c
‖
=
3
⋅
2
+
5
⋅
2
+
1
⋅
(
−
16
)
3
2
+
5
2
+
1
2
⋅
2
2
+
2
2
+
(
−
16
)
2
=
6
+
10
−
16
9
+
25
+
1
⋅
4
+
4
+
256
=
0
;
{\displaystyle \cos \alpha ={\frac {\mathbf {a} \cdot \mathbf {b} }{\|\mathbf {a} \|\cdot \|\mathbf {c} \|}}={\frac {3\cdot 2+5\cdot 2+1\cdot (-16)}{{\sqrt {3^{2}+5^{2}+1^{2}}}\cdot {\sqrt {2^{2}+2^{2}+(-16)^{2}}}}}={\frac {6+10-16}{{\sqrt {9+25+1}}\cdot {\sqrt {4+4+256}}}}=0;}
α
=
arccos
(
0
)
=
π
2
=
1
,
570796327
{\displaystyle \alpha =\arccos(0)={\frac {\pi }{2}}=1,570796327}
radiano arba
α
=
90
∘
.
{\displaystyle \alpha =90^{\circ }.}
Turime dvi tiesių atkarpas: OA ir OB . Taškas O (0; 0; 0) yra koordinačių pradžios taškas. Taškas A (3; 5; 1) yra vektorius a =(3; 5; 1). Taškas B (4; 3; 2) yra vektorius b =(4; 3; 2). Vektorius a yra tiesės atkarpa nuo taško O (0; 0; 0) iki taško A (3; 5; 1). Vektorius b yra tiesės atkarpa nuo taško O (0; 0; 0) iki taško B (4; 3; 2). Sudauginę vektorine vektorių sandauga vektorius a ir b , gausime jiems statų vektorių c . Taigi, taško C , kuris su tašku O sudaro atkarpą statmeną atkarpoms OA ir OB , koordinatės yra:
c
=
a
×
b
=
|
i
j
k
3
5
1
4
3
2
|
=
|
5
1
3
2
|
i
−
|
3
1
4
2
|
j
+
|
3
5
4
3
|
k
=
{\displaystyle \mathbf {c} =\mathbf {a} \times \mathbf {b} ={\begin{vmatrix}\mathbf {i} &\mathbf {j} &\mathbf {k} \\3&5&1\\4&3&2\\\end{vmatrix}}={\begin{vmatrix}5&1\\3&2\end{vmatrix}}\mathbf {i} -{\begin{vmatrix}3&1\\4&2\end{vmatrix}}\mathbf {j} +{\begin{vmatrix}3&5\\4&3\end{vmatrix}}\mathbf {k} =}
=
i
(
5
⋅
2
−
1
⋅
3
)
−
j
(
3
⋅
2
−
1
⋅
4
)
+
k
(
3
⋅
3
−
5
⋅
4
)
=
i
(
10
−
3
)
−
j
(
6
−
4
)
+
k
(
9
−
20
)
=
{\displaystyle =\mathbf {i} (5\cdot 2-1\cdot 3)-\mathbf {j} (3\cdot 2-1\cdot 4)+\mathbf {k} (3\cdot 3-5\cdot 4)=\mathbf {i} (10-3)-\mathbf {j} (6-4)+\mathbf {k} (9-20)=}
=
7
i
−
2
j
−
11
k
=
(
7
;
−
2
;
−
11
)
.
{\displaystyle =7\mathbf {i} -2\mathbf {j} -11\mathbf {k} =(7;-2;-11).}
Gavome tašką C (7; -2; -11).
Įsitikiname, kad kampas
α
{\displaystyle \alpha }
tarp vektoriaus a =(3; 5; 1) ir vektoriaus c =(7; -2; -11) yra lygus 90 laipsnių:
cos
α
=
a
⋅
b
‖
a
‖
⋅
‖
c
‖
=
3
⋅
7
+
5
⋅
(
−
2
)
+
1
⋅
(
−
11
)
3
2
+
5
2
+
1
2
⋅
7
2
+
(
−
2
)
2
+
(
−
11
)
2
=
21
−
10
−
11
9
+
25
+
1
⋅
49
+
4
+
121
=
0
;
{\displaystyle \cos \alpha ={\frac {\mathbf {a} \cdot \mathbf {b} }{\|\mathbf {a} \|\cdot \|\mathbf {c} \|}}={\frac {3\cdot 7+5\cdot (-2)+1\cdot (-11)}{{\sqrt {3^{2}+5^{2}+1^{2}}}\cdot {\sqrt {7^{2}+(-2)^{2}+(-11)^{2}}}}}={\frac {21-10-11}{{\sqrt {9+25+1}}\cdot {\sqrt {49+4+121}}}}=0;}
α
=
arccos
(
0
)
=
π
2
=
1
,
570796327
{\displaystyle \alpha =\arccos(0)={\frac {\pi }{2}}=1,570796327}
radiano arba
α
=
90
∘
.
{\displaystyle \alpha =90^{\circ }.}
Įsitikiname, kad kampas
β
{\displaystyle \beta }
tarp vektoriaus b =(4; 3; 2) ir vektoriaus c =(7; -2; -11) yra lygus 90 laipsnių:
cos
β
=
a
⋅
b
‖
a
‖
⋅
‖
c
‖
=
4
⋅
7
+
3
⋅
(
−
2
)
+
2
⋅
(
−
11
)
4
2
+
3
2
+
2
2
⋅
7
2
+
(
−
2
)
2
+
(
−
11
)
2
=
28
−
6
−
22
16
+
9
+
4
⋅
49
+
4
+
121
=
0
;
{\displaystyle \cos \beta ={\frac {\mathbf {a} \cdot \mathbf {b} }{\|\mathbf {a} \|\cdot \|\mathbf {c} \|}}={\frac {4\cdot 7+3\cdot (-2)+2\cdot (-11)}{{\sqrt {4^{2}+3^{2}+2^{2}}}\cdot {\sqrt {7^{2}+(-2)^{2}+(-11)^{2}}}}}={\frac {28-6-22}{{\sqrt {16+9+4}}\cdot {\sqrt {49+4+121}}}}=0;}
β
=
arccos
(
0
)
=
π
2
=
1
,
570796327
{\displaystyle \beta =\arccos(0)={\frac {\pi }{2}}=1,570796327}
radiano arba
β
=
90
∘
.
{\displaystyle \beta =90^{\circ }.}
Mišri vektorių sandauga
keisti
Mišri vektorių sandauga (a b c ) yra apibrėžiama:
(
a
b
c
)
=
a
⋅
(
b
×
c
)
.
{\displaystyle (\mathbf {a} \ \mathbf {b} \ \mathbf {c} )=\mathbf {a} \cdot (\mathbf {b} \times \mathbf {c} ).}
Mišriają sandaugą taip pat galima užrašyti taip:
V
=
|
(
a
×
b
)
⋅
c
|
{\displaystyle V=|(\mathbf {a} \times \mathbf {b} )\cdot \mathbf {c} |}
,
čia V yra lygiagretainio gretasienio tūris.
Piramidės tūris yra:
V
p
i
r
.
=
1
6
|
(
a
×
b
)
⋅
c
|
.
{\displaystyle V_{pir.}={\frac {1}{6}}|(\mathbf {a} \times \mathbf {b} )\cdot \mathbf {c} |.}
Duoti vektoriai a =(4; 9; 0), b =(7; 5; 0), c =(2; 3; 10). Rasime piramidės, kurią sudaro šie vektoriai, tūrį.
(
a
×
b
)
⋅
c
=
|
a
x
a
y
a
z
b
z
b
y
b
z
c
x
c
y
c
z
|
=
a
x
|
b
y
b
z
c
y
c
z
|
−
a
y
|
b
x
b
z
c
x
c
z
|
+
a
z
|
b
x
b
y
c
x
c
y
|
=
{\displaystyle (\mathbf {a} \times \mathbf {b} )\cdot \mathbf {c} ={\begin{vmatrix}a_{x}&a_{y}&a_{z}\\b_{z}&b_{y}&b_{z}\\c_{x}&c_{y}&c_{z}\end{vmatrix}}=a_{x}{\begin{vmatrix}b_{y}&b_{z}\\c_{y}&c_{z}\end{vmatrix}}-a_{y}{\begin{vmatrix}b_{x}&b_{z}\\c_{x}&c_{z}\end{vmatrix}}+a_{z}{\begin{vmatrix}b_{x}&b_{y}\\c_{x}&c_{y}\end{vmatrix}}=}
=
|
4
9
0
7
5
0
2
3
10
|
=
4
|
5
0
3
10
|
−
9
|
7
0
2
10
|
+
0
⋅
|
7
5
2
3
|
=
4
⋅
50
−
9
⋅
70
+
0
=
200
−
630
=
−
430.
{\displaystyle ={\begin{vmatrix}4&9&0\\7&5&0\\2&3&10\end{vmatrix}}=4{\begin{vmatrix}5&0\\3&10\end{vmatrix}}-9{\begin{vmatrix}7&0\\2&10\end{vmatrix}}+0\cdot {\begin{vmatrix}7&5\\2&3\end{vmatrix}}=4\cdot 50-9\cdot 70+0=200-630=-430.}
Piramidės su viršūnėmis O(0; 0; 0), A(4; 9; 0), B(7; 5; 0), C(2; 3; 10) tūris yra:
V
p
i
r
.
=
1
6
⋅
|
(
a
×
b
)
⋅
c
|
=
1
6
⋅
|
−
430
|
=
430
6
=
215
3
=
71.66666667.
{\displaystyle V_{pir.}={\frac {1}{6}}\cdot |(\mathbf {a} \times \mathbf {b} )\cdot \mathbf {c} |={\frac {1}{6}}\cdot |-430|={\frac {430}{6}}={\frac {215}{3}}=71.66666667.}
Duoti vektoriai a =(4; 9; 0), b =(7; 5; 0), c =(0; 0; 10). Rasime piramidės, kurią sudaro šie vektoriai, tūrį.
(
a
×
b
)
⋅
c
=
|
a
x
a
y
a
z
b
z
b
y
b
z
c
x
c
y
c
z
|
=
a
x
|
b
y
b
z
c
y
c
z
|
−
a
y
|
b
x
b
z
c
x
c
z
|
+
a
z
|
b
x
b
y
c
x
c
y
|
=
{\displaystyle (\mathbf {a} \times \mathbf {b} )\cdot \mathbf {c} ={\begin{vmatrix}a_{x}&a_{y}&a_{z}\\b_{z}&b_{y}&b_{z}\\c_{x}&c_{y}&c_{z}\end{vmatrix}}=a_{x}{\begin{vmatrix}b_{y}&b_{z}\\c_{y}&c_{z}\end{vmatrix}}-a_{y}{\begin{vmatrix}b_{x}&b_{z}\\c_{x}&c_{z}\end{vmatrix}}+a_{z}{\begin{vmatrix}b_{x}&b_{y}\\c_{x}&c_{y}\end{vmatrix}}=}
=
|
4
9
0
7
5
0
0
0
10
|
=
4
|
5
0
0
10
|
−
9
|
7
0
0
10
|
+
0
⋅
|
7
5
0
0
|
=
4
⋅
50
−
9
⋅
70
+
0
=
200
−
630
=
−
430.
{\displaystyle ={\begin{vmatrix}4&9&0\\7&5&0\\0&0&10\end{vmatrix}}=4{\begin{vmatrix}5&0\\0&10\end{vmatrix}}-9{\begin{vmatrix}7&0\\0&10\end{vmatrix}}+0\cdot {\begin{vmatrix}7&5\\0&0\end{vmatrix}}=4\cdot 50-9\cdot 70+0=200-630=-430.}
Piramidės su viršūnėmis O(0; 0; 0), A(4; 9; 0), B(7; 5; 0), C(0; 0; 10) tūris yra:
V
p
i
r
.
=
1
6
⋅
|
(
a
×
b
)
⋅
c
|
=
1
6
⋅
|
−
430
|
=
430
6
=
215
3
=
71.66666667.
{\displaystyle V_{pir.}={\frac {1}{6}}\cdot |(\mathbf {a} \times \mathbf {b} )\cdot \mathbf {c} |={\frac {1}{6}}\cdot |-430|={\frac {430}{6}}={\frac {215}{3}}=71.66666667.}
Duoti vektoriai a=(1; 2; 0), b=(1; -2; 0), c=(0; 0; 3), kurių pradžios koordinatės yra (0; 0; 0). Rasime lygiagretainio gretasienio tūrį :
V
=
(
a
×
b
)
⋅
c
=
|
a
x
a
y
a
z
b
z
b
y
b
z
c
x
c
y
c
z
|
=
c
x
⋅
(
−
1
)
3
+
1
|
a
y
a
z
b
y
b
z
|
+
c
y
⋅
(
−
1
)
3
+
2
|
a
x
a
z
b
x
b
z
|
+
c
z
⋅
(
−
1
)
3
+
3
|
a
x
a
y
b
x
b
y
|
=
{\displaystyle V=(a\times b)\cdot c={\begin{vmatrix}a_{x}&a_{y}&a_{z}\\b_{z}&b_{y}&b_{z}\\c_{x}&c_{y}&c_{z}\end{vmatrix}}=c_{x}\cdot (-1)^{3+1}{\begin{vmatrix}a_{y}&a_{z}\\b_{y}&b_{z}\end{vmatrix}}+c_{y}\cdot (-1)^{3+2}{\begin{vmatrix}a_{x}&a_{z}\\b_{x}&b_{z}\end{vmatrix}}+c_{z}\cdot (-1)^{3+3}{\begin{vmatrix}a_{x}&a_{y}\\b_{x}&b_{y}\end{vmatrix}}=}
=
|
1
2
0
1
−
2
0
0
0
3
|
=
3
⋅
(
−
1
)
3
+
3
|
1
2
1
−
2
|
=
3
(
1
⋅
(
−
2
)
−
2
⋅
1
)
=
−
12.
{\displaystyle ={\begin{vmatrix}1&2&0\\1&-2&0\\0&0&3\end{vmatrix}}=3\cdot (-1)^{3+3}{\begin{vmatrix}1&2\\1&-2\end{vmatrix}}=3(1\cdot (-2)-2\cdot 1)=-12.}
Gretasienio tūris yra |-12|=12. Taip pat galima skaičiuot taip:
V
=
|
1
2
0
1
−
2
0
0
0
3
|
=
1
⋅
(
−
2
)
⋅
3
+
2
⋅
0
⋅
0
+
0
⋅
1
⋅
0
−
1
⋅
0
⋅
0
−
2
⋅
1
⋅
3
−
0
⋅
(
−
2
)
⋅
0
=
−
6
+
0
+
0
−
0
−
6
−
0
=
−
12.
{\displaystyle V={\begin{vmatrix}1&2&0\\1&-2&0\\0&0&3\end{vmatrix}}=1\cdot (-2)\cdot 3+2\cdot 0\cdot 0+0\cdot 1\cdot 0-1\cdot 0\cdot 0-2\cdot 1\cdot 3-0\cdot (-2)\cdot 0=-6+0+0-0-6-0=-12.}
Patikriname ar atsakymas bus toks pat naudojant vektorine sandauga (vektorių a ir b) sudauginta su statmeno vektoriaus c ilgiu:
a
×
b
=
|
i
j
k
1
2
0
1
−
2
0
|
=
{\displaystyle a\times b={\begin{vmatrix}i&j&k\\1&2&0\\1&-2&0\end{vmatrix}}=}
=
i
⋅
2
⋅
0
+
j
⋅
0
⋅
1
+
k
⋅
1
⋅
(
−
2
)
−
i
⋅
0
⋅
(
−
2
)
−
j
⋅
1
⋅
0
−
k
⋅
2
⋅
1
=
{\displaystyle =i\cdot 2\cdot 0+j\cdot 0\cdot 1+k\cdot 1\cdot (-2)-i\cdot 0\cdot (-2)-j\cdot 1\cdot 0-k\cdot 2\cdot 1=}
=
0
i
−
0
i
+
0
j
−
0
j
−
2
k
−
2
k
=
0
i
+
0
j
−
4
k
=
(
0
;
0
;
−
4
)
.
{\displaystyle =0i-0i+0j-0j-2k-2k=0i+0j-4k=(0;0;-4).}
|
|
a
×
b
|
|
=
0
2
+
0
2
+
(
−
4
)
2
=
0
+
0
+
16
=
16
=
4.
{\displaystyle ||a\times b||={\sqrt {0^{2}+0^{2}+(-4)^{2}}}={\sqrt {0+0+16}}={\sqrt {16}}=4.}
|
|
c
|
|
=
0
2
+
0
2
+
3
2
=
9
=
3.
{\displaystyle ||c||={\sqrt {0^{2}+0^{2}+3^{2}}}={\sqrt {9}}=3.}
V
=
|
|
a
×
b
|
|
⋅
|
|
c
|
|
=
4
⋅
3
=
12.
{\displaystyle V=||a\times b||\cdot ||c||=4\cdot 3=12.}
Patikriname taikydami Herono formulę.
|
|
a
|
|
=
1
2
+
2
2
+
0
2
=
5
=
2
,
236067978.
{\displaystyle ||a||={\sqrt {1^{2}+2^{2}+0^{2}}}={\sqrt {5}}=2,236067978.}
|
|
b
|
|
=
1
2
+
(
−
2
)
2
+
0
=
5
=
2
,
236067978.
{\displaystyle ||b||={\sqrt {1^{2}+(-2)^{2}+0}}={\sqrt {5}}=2,236067978.}
Atstumas tarp taškų a=(1; 2; 0) ir b=(1; -2; 0) yra lygus:
f
=
(
1
−
1
)
2
+
(
2
−
(
−
2
)
)
2
+
(
0
−
0
)
2
=
16
=
4.
{\displaystyle f={\sqrt {(1-1)^{2}+(2-(-2))^{2}+(0-0)^{2}}}={\sqrt {16}}=4.}
p
=
a
+
b
+
f
2
=
5
+
5
+
4
2
=
5
+
2
=
4.236067978.
{\displaystyle p={a+b+f \over 2}={{\sqrt {5}}+{\sqrt {5}}+4 \over 2}={\sqrt {5}}+2=4.236067978.}
S
Δ
=
p
(
p
−
a
)
(
p
−
b
)
(
p
−
f
)
=
4.236067978
(
5
+
2
−
5
)
(
5
+
2
−
5
)
(
5
+
2
−
4
)
=
{\displaystyle S_{\Delta }={\sqrt {p(p-a)(p-b)(p-f)}}={\sqrt {4.236067978({\sqrt {5}}+2-{\sqrt {5}})({\sqrt {5}}+2-{\sqrt {5}})({\sqrt {5}}+2-4)}}=}
=
(
5
+
2
)
⋅
2
⋅
2
⋅
(
5
−
2
)
=
(
5
−
4
)
⋅
2
⋅
2
=
4
=
2.
{\displaystyle ={\sqrt {({\sqrt {5}}+2)\cdot 2\cdot 2\cdot ({\sqrt {5}}-2)}}={\sqrt {(5-4)\cdot 2\cdot 2}}={\sqrt {4}}=2.}
S
=
2
S
Δ
=
2
⋅
2
=
4.
{\displaystyle S=2S_{\Delta }=2\cdot 2=4.}
V
=
S
⋅
|
|
c
|
|
=
4
⋅
3
=
12.
{\displaystyle V=S\cdot ||c||=4\cdot 3=12.}
Rasime piramidės su 4 viršunėmis, kurios pagrindas yra trikampis, tūrį:
V
=
1
6
|
(
a
×
b
)
⋅
c
|
=
12
6
=
2.
{\displaystyle V={\frac {1}{6}}|(a\times b)\cdot c|={\frac {12}{6}}=2.}
Piramidės tūris yra
1
6
|
(
a
×
b
)
⋅
c
|
{\displaystyle {\frac {1}{6}}|(a\times b)\cdot c|}
todėl, kad piramidės pagrindo plotas yra puse (S=ab/2) lygiagretainio ploto, o kadangi gretasienio tūris yra V=abh=Sh ir piramidės (kurios pagrindas trikampis) tūris yra V=(ab/2)*h/3=abh/6=Sh/3, tai dėl to piramidės tūris yra V=abh/6 arba 1/6 gretasienio tūrio. Piramidės, kurios pagrindas yra keturkampis, tūris yra
V
=
1
3
|
(
a
×
b
)
⋅
c
|
.
{\displaystyle V={\frac {1}{3}}|(a\times b)\cdot c|.}
Pavyzdis. Trikampės piramidės viršūnės yra taškai A (3; -1; 5), B (5; 2; 6), C (-1; 3; 4) ir D (7; 3; -1). Apskaičiuosime šios piramidės tūrį ir aukštinės, nuleistos iš taško D į sieną ABC , ilgį.
Sprendimas . Nubraižykime tris vektorius, išeinančius iš vieno taško, pavyzdžiui, iš taško A : AB , AC , AD . Žinome, kad trikampės piramidės tūris
V
p
i
r
.
=
1
6
|
(
A
B
×
A
C
)
⋅
A
D
|
.
{\displaystyle V_{pir.}={\frac {1}{6}}|(AB\times AC)\cdot AD|.}
Randame vektorių AB , AC ir AD koordinates:
AB =B-A=(5-3; 2-(-1); 6-5)={2; 3; 1},
AC =C-A=(-1-3; 3-(-1); 4-5)={-4; 4; -1},
AD =D-A=(7-3; 3-(-1); -1-5)={4; 4; -6}.
Apskaičiuojame mišriąją gautų vektorių sandaugą:
(
A
B
×
A
C
)
⋅
A
D
=
|
2
3
1
−
4
4
−
1
4
4
−
6
|
=
2
⋅
(
−
1
)
1
+
1
|
4
−
1
4
−
6
|
+
3
⋅
(
−
1
)
1
+
2
|
−
4
−
1
4
−
6
|
+
1
⋅
(
−
1
)
1
+
3
|
−
4
4
4
4
|
=
{\displaystyle (AB\times AC)\cdot AD={\begin{vmatrix}2&3&1\\-4&4&-1\\4&4&-6\end{vmatrix}}=2\cdot (-1)^{1+1}{\begin{vmatrix}4&-1\\4&-6\end{vmatrix}}+3\cdot (-1)^{1+2}{\begin{vmatrix}-4&-1\\4&-6\end{vmatrix}}+1\cdot (-1)^{1+3}{\begin{vmatrix}-4&4\\4&4\end{vmatrix}}=}
=
2
⋅
(
−
1
)
2
⋅
(
4
⋅
(
−
6
)
−
(
−
1
)
⋅
4
)
+
3
⋅
(
−
1
)
3
⋅
(
(
−
4
)
⋅
(
−
6
)
−
(
−
1
)
⋅
4
)
+
1
⋅
(
−
1
)
4
⋅
(
(
−
4
)
⋅
4
−
4
⋅
4
)
=
{\displaystyle =2\cdot (-1)^{2}\cdot (4\cdot (-6)-(-1)\cdot 4)+3\cdot (-1)^{3}\cdot ((-4)\cdot (-6)-(-1)\cdot 4)+1\cdot (-1)^{4}\cdot ((-4)\cdot 4-4\cdot 4)=}
=
2
⋅
(
−
24
+
4
)
−
3
⋅
(
24
+
4
)
+
1
⋅
(
−
16
−
16
)
=
2
⋅
(
−
20
)
−
3
⋅
28
−
32
=
−
40
−
84
−
32
=
−
156.
{\displaystyle =2\cdot (-24+4)-3\cdot (24+4)+1\cdot (-16-16)=2\cdot (-20)-3\cdot 28-32=-40-84-32=-156.}
Tada trikampės piramidės tūris
V
p
i
r
.
=
1
6
⋅
|
−
156
|
=
156
6
=
26.
{\displaystyle V_{pir.}={\frac {1}{6}}\cdot |-156|={\frac {156}{6}}=26.}
Norėdami rasti piramidės aukštinę h , pritaikykime kitą piramidės tūrio formulę:
V
p
i
r
.
=
1
3
⋅
S
Δ
A
B
C
⋅
h
.
{\displaystyle V_{pir.}={\frac {1}{3}}\cdot S_{\Delta ABC}\cdot h.}
Bet
S
Δ
A
B
C
=
1
2
⋅
‖
A
B
×
A
C
‖
,
{\displaystyle S_{\Delta ABC}={\frac {1}{2}}\cdot \|AB\times AC\|,}
todėl
V
p
i
r
.
=
1
6
⋅
‖
A
B
×
A
C
‖
⋅
h
.
{\displaystyle V_{pir.}={\frac {1}{6}}\cdot \|AB\times AC\|\cdot h.}
Sulygindami šią formulę su ankstesne piramidės formule, gauname:
1
6
|
(
A
B
×
A
C
)
⋅
A
D
|
=
1
6
⋅
‖
A
B
×
A
C
‖
⋅
h
;
{\displaystyle {\frac {1}{6}}|(AB\times AC)\cdot AD|={\frac {1}{6}}\cdot \|AB\times AC\|\cdot h;}
h
=
|
(
A
B
×
A
C
)
⋅
A
D
|
‖
A
B
×
A
C
‖
=
156
453
=
7.329519377
,
{\displaystyle h={\frac {|(AB\times AC)\cdot AD|}{\|AB\times AC\|}}={\frac {156}{\sqrt {453}}}=7.329519377,}
kur
A
B
×
A
C
=
|
i
j
k
2
3
1
−
4
4
−
1
|
=
i
⋅
(
−
1
)
1
+
1
|
3
1
4
−
1
|
+
j
⋅
(
−
1
)
1
+
2
|
2
1
−
4
−
1
|
+
k
⋅
(
−
1
)
1
+
3
|
2
3
−
4
4
|
=
{\displaystyle AB\times AC={\begin{vmatrix}\mathbf {i} &\mathbf {j} &\mathbf {k} \\2&3&1\\-4&4&-1\end{vmatrix}}=\mathbf {i} \cdot (-1)^{1+1}{\begin{vmatrix}3&1\\4&-1\end{vmatrix}}+\mathbf {j} \cdot (-1)^{1+2}{\begin{vmatrix}2&1\\-4&-1\end{vmatrix}}+\mathbf {k} \cdot (-1)^{1+3}{\begin{vmatrix}2&3\\-4&4\end{vmatrix}}=}
=
i
⋅
(
3
⋅
(
−
1
)
−
1
⋅
4
)
−
j
⋅
(
2
⋅
(
−
1
)
−
1
⋅
(
−
4
)
)
+
k
⋅
(
2
⋅
4
−
3
⋅
(
−
4
)
)
=
i
⋅
(
−
3
−
4
)
−
j
⋅
(
−
2
+
4
)
+
k
⋅
(
8
+
12
)
=
−
7
i
−
2
j
+
20
k
=
(
−
7
;
−
2
;
20
)
;
{\displaystyle =\mathbf {i} \cdot (3\cdot (-1)-1\cdot 4)-\mathbf {j} \cdot (2\cdot (-1)-1\cdot (-4))+\mathbf {k} \cdot (2\cdot 4-3\cdot (-4))=\mathbf {i} \cdot (-3-4)-\mathbf {j} \cdot (-2+4)+\mathbf {k} \cdot (8+12)=-7\mathbf {i} -2\mathbf {j} +20\mathbf {k} =(-7;-2;20);}
‖
A
B
×
A
C
‖
=
(
−
7
)
2
+
(
−
2
)
2
+
20
2
=
49
+
4
+
400
=
453
=
21.28379665.
{\displaystyle \|AB\times AC\|={\sqrt {(-7)^{2}+(-2)^{2}+20^{2}}}={\sqrt {49+4+400}}={\sqrt {453}}=21.28379665.}
Pavyzdis . Duoti vektoriai A =a ={5; 3; 0}, B =b ={4; 11; 0}, C =c ={3; 7; 6}. Visi jie išeina iš koordinačių pradžios taško O (0; 0; 0), todėl visi trys vektoriai liečiasi tame pačiame taške (0; 0; 0). Rasime piramidės tūrį ir patikrinsimę jį (žinodami piramidės aukštį
h
=
c
z
=
6
{\displaystyle h=c_{z}=6}
). Piramidės tūris, kurios pagriną sudaro OAB trikampis, yra:
V
p
i
r
.
=
1
6
⋅
|
(
a
×
b
)
⋅
c
|
=
1
6
⋅
|
258
|
=
43.
{\displaystyle V_{pir.}={\frac {1}{6}}\cdot |(\mathbf {a} \times \mathbf {b} )\cdot \mathbf {c} |={\frac {1}{6}}\cdot |258|=43.}
kur
(
a
×
b
)
⋅
c
=
|
5
3
0
4
11
0
3
7
6
|
=
5
⋅
(
−
1
)
1
+
1
|
11
0
7
6
|
+
3
⋅
(
−
1
)
1
+
2
|
4
0
3
6
|
+
0
⋅
(
−
1
)
1
+
3
|
4
11
3
7
|
=
{\displaystyle (\mathbf {a} \times \mathbf {b} )\cdot \mathbf {c} ={\begin{vmatrix}5&3&0\\4&11&0\\3&7&6\end{vmatrix}}=5\cdot (-1)^{1+1}{\begin{vmatrix}11&0\\7&6\end{vmatrix}}+3\cdot (-1)^{1+2}{\begin{vmatrix}4&0\\3&6\end{vmatrix}}+0\cdot (-1)^{1+3}{\begin{vmatrix}4&11\\3&7\end{vmatrix}}=}
=
5
⋅
(
−
1
)
2
⋅
(
11
⋅
6
−
0
⋅
7
)
+
3
⋅
(
−
1
)
3
⋅
(
4
⋅
6
−
0
⋅
3
)
+
0
=
5
⋅
66
−
3
⋅
24
=
330
−
72
=
258.
{\displaystyle =5\cdot (-1)^{2}\cdot (11\cdot 6-0\cdot 7)+3\cdot (-1)^{3}\cdot (4\cdot 6-0\cdot 3)+0=5\cdot 66-3\cdot 24=330-72=258.}
Toliau, surandame trikampio OAB plotą:
a
×
b
=
|
i
j
k
5
3
0
4
11
0
|
=
i
⋅
(
−
1
)
1
+
1
|
3
0
11
0
|
+
j
⋅
(
−
1
)
1
+
2
|
5
0
4
0
|
+
k
⋅
(
−
1
)
1
+
3
|
5
3
4
11
|
=
{\displaystyle \mathbf {a} \times \mathbf {b} ={\begin{vmatrix}\mathbf {i} &\mathbf {j} &\mathbf {k} \\5&3&0\\4&11&0\end{vmatrix}}=\mathbf {i} \cdot (-1)^{1+1}{\begin{vmatrix}3&0\\11&0\end{vmatrix}}+\mathbf {j} \cdot (-1)^{1+2}{\begin{vmatrix}5&0\\4&0\end{vmatrix}}+\mathbf {k} \cdot (-1)^{1+3}{\begin{vmatrix}5&3\\4&11\end{vmatrix}}=}
=
i
⋅
(
3
⋅
0
−
0
⋅
11
)
−
j
⋅
(
5
⋅
0
−
0
⋅
4
)
+
k
⋅
(
5
⋅
11
−
3
⋅
4
)
=
0
i
−
0
j
⋅
+
k
⋅
(
55
−
12
)
=
0
i
+
0
j
+
43
k
=
(
0
;
0
;
43
)
;
{\displaystyle =\mathbf {i} \cdot (3\cdot 0-0\cdot 11)-\mathbf {j} \cdot (5\cdot 0-0\cdot 4)+\mathbf {k} \cdot (5\cdot 11-3\cdot 4)=0\mathbf {i} -0\mathbf {j} \cdot +\mathbf {k} \cdot (55-12)=0\mathbf {i} +0\mathbf {j} +43\mathbf {k} =(0;0;43);}
S
Δ
O
A
B
=
1
2
⋅
‖
a
×
b
‖
=
1
2
⋅
0
2
+
0
2
+
43
2
=
43
2
=
21.5.
{\displaystyle S_{\Delta OAB}={\frac {1}{2}}\cdot \|\mathbf {a} \times \mathbf {b} \|={\frac {1}{2}}\cdot {\sqrt {0^{2}+0^{2}+43^{2}}}={\frac {43}{2}}=21.5.}
Piramidės OABC tūris yra:
V
p
i
r
.
=
1
3
⋅
S
Δ
O
A
B
⋅
h
=
21.5
⋅
6
3
=
43.
{\displaystyle V_{pir.}={\frac {1}{3}}\cdot S_{\Delta OAB}\cdot h={\frac {21.5\cdot 6}{3}}=43.}
Pavyzdis . Duoti vektoriai a ={8; 6; 2}, b ={5; 9; 3}, c ={1; 2; 7}. Apskaičiuosime piramidės, kurią sudaro šie vektoriai, tūrį V .
Sprendimas . Piramidės tūris yra lygus 1/6 mišrios vektorių a ={8; 6; 2}, b ={5; 9; 3}, c ={1; 2; 7} sandaugos. Taigi:
(
a
×
b
)
⋅
c
=
|
a
x
a
y
a
z
b
z
b
y
b
z
c
x
c
y
c
z
|
=
|
8
6
2
5
9
3
1
2
7
|
=
8
⋅
(
−
1
)
1
+
3
|
9
3
2
7
|
+
6
⋅
(
−
1
)
1
+
2
|
5
3
1
7
|
+
2
⋅
(
−
1
)
1
+
3
|
5
9
1
2
|
=
{\displaystyle (\mathbf {a} \times \mathbf {b} )\cdot \mathbf {c} ={\begin{vmatrix}a_{x}&a_{y}&a_{z}\\b_{z}&b_{y}&b_{z}\\c_{x}&c_{y}&c_{z}\end{vmatrix}}={\begin{vmatrix}8&6&2\\5&9&3\\1&2&7\end{vmatrix}}=8\cdot (-1)^{1+3}{\begin{vmatrix}9&3\\2&7\end{vmatrix}}+6\cdot (-1)^{1+2}{\begin{vmatrix}5&3\\1&7\end{vmatrix}}+2\cdot (-1)^{1+3}{\begin{vmatrix}5&9\\1&2\end{vmatrix}}=}
=
8
⋅
(
9
⋅
7
−
3
⋅
2
)
−
6
⋅
(
5
⋅
7
−
3
⋅
1
)
+
2
⋅
(
5
⋅
2
−
9
⋅
1
)
=
8
⋅
(
63
−
6
)
−
6
⋅
(
35
−
3
)
+
2
⋅
(
10
−
9
)
=
8
⋅
57
−
6
⋅
32
+
2
⋅
1
=
285
−
192
+
2
=
95.
{\displaystyle =8\cdot (9\cdot 7-3\cdot 2)-6\cdot (5\cdot 7-3\cdot 1)+2\cdot (5\cdot 2-9\cdot 1)=8\cdot (63-6)-6\cdot (35-3)+2\cdot (10-9)=8\cdot 57-6\cdot 32+2\cdot 1=285-192+2=95.}
V
=
1
6
⋅
|
(
a
×
b
)
⋅
c
|
=
1
6
⋅
|
95
|
=
95
6
=
15.833333333.
{\displaystyle V={\frac {1}{6}}\cdot |(\mathbf {a} \times \mathbf {b} )\cdot \mathbf {c} |={\frac {1}{6}}\cdot |95|={\frac {95}{6}}=15.833333333.}
Kolinearūs ir komplanarūs vektoriai
keisti
Vektoriai yra kolinearūs, jeigu
a
×
b
=
0.
{\displaystyle a\times b=0.}
Dvimačiai vektoriai yra kolinearūs, kai yra lygiagretūs.
Vektoriai yra komplanarūs, jeigu
(
a
×
b
)
⋅
c
=
0.
{\displaystyle (\mathbf {a} \times \mathbf {b} )\cdot \mathbf {c} =0.}
Trimatėje erdvėje vektoriai yra komplanarūs, kai priklauso tai pačiai ploštumai.
Pavyzdys . Ar gali keturi taškai A(1; 2; 3), B(2; 4; 1), C(1; -3; 6) ir D(4; -2; 3) priklausyti vienai plokštumai?
Sprendimas. Taškai A , B , C ir D priklausys plokštumai g , kai vektoriai AB , AC ir AD bus komplanarūs. Randame šų vektorių koordinates:
a =AB=B-A=(2-1; 4-2; 1-3)={1; 2; -2},
b =AC=C-A=(1-1; -3-2; 6-3)={0; -5; 3},
c =AD=D-A=(4-1; -2-2; 3-3)={3; -4; 0}.
Apskaičiuojame mišriąją jų sandaugą:
(
a
×
b
)
⋅
c
=
|
a
x
a
y
a
z
b
z
b
y
b
z
c
x
c
y
c
z
|
=
c
x
⋅
(
−
1
)
3
+
1
|
a
y
a
z
b
y
b
z
|
+
c
y
⋅
(
−
1
)
3
+
2
|
a
x
a
z
b
x
b
z
|
+
c
z
⋅
(
−
1
)
3
+
3
|
a
x
a
y
b
x
b
y
|
=
{\displaystyle (\mathbf {a} \times \mathbf {b} )\cdot \mathbf {c} ={\begin{vmatrix}a_{x}&a_{y}&a_{z}\\b_{z}&b_{y}&b_{z}\\c_{x}&c_{y}&c_{z}\end{vmatrix}}=c_{x}\cdot (-1)^{3+1}{\begin{vmatrix}a_{y}&a_{z}\\b_{y}&b_{z}\end{vmatrix}}+c_{y}\cdot (-1)^{3+2}{\begin{vmatrix}a_{x}&a_{z}\\b_{x}&b_{z}\end{vmatrix}}+c_{z}\cdot (-1)^{3+3}{\begin{vmatrix}a_{x}&a_{y}\\b_{x}&b_{y}\end{vmatrix}}=}
=
|
1
2
−
2
0
−
5
3
3
−
4
0
|
=
3
⋅
(
−
1
)
3
+
1
|
2
−
2
−
5
3
|
+
(
−
4
)
⋅
(
−
1
)
3
+
2
|
1
−
2
0
3
|
+
0
⋅
(
−
1
)
3
+
3
|
1
2
0
−
5
|
=
{\displaystyle ={\begin{vmatrix}1&2&-2\\0&-5&3\\3&-4&0\end{vmatrix}}=3\cdot (-1)^{3+1}{\begin{vmatrix}2&-2\\-5&3\end{vmatrix}}+(-4)\cdot (-1)^{3+2}{\begin{vmatrix}1&-2\\0&3\end{vmatrix}}+0\cdot (-1)^{3+3}{\begin{vmatrix}1&2\\0&-5\end{vmatrix}}=}
=
3
⋅
(
2
⋅
3
−
(
−
2
)
⋅
(
−
5
)
)
+
4
⋅
(
1
⋅
3
−
(
−
2
)
⋅
0
)
+
0
=
3
⋅
(
6
−
10
)
+
4
⋅
3
+
0
=
3
⋅
(
−
4
)
+
12
=
−
12
+
12
=
0.
{\displaystyle =3\cdot (2\cdot 3-(-2)\cdot (-5))+4\cdot (1\cdot 3-(-2)\cdot 0)+0=3\cdot (6-10)+4\cdot 3+0=3\cdot (-4)+12=-12+12=0.}
Kadangi mišrioji tijų vektorių sandauga lygi nuliui, tai tie vektoriai yra komplanarūs, o taškai A , B , C ir D priklauso vienai plokštumai g .
Patikrinsime, ar vektoriai AG ={-0.16178814; 1.49809435; 0.093183585}, AB ={2; 3; 1} ir AC ={-4; 4; -1} komplanarūs (ar vektoriai guli toje pačioje plokštumoje):
(
A
G
→
×
A
B
→
)
⋅
A
C
→
=
|
−
0.16178814
1.49809435
0.093183585
2
3
1
−
4
4
−
1
|
=
{\displaystyle ({\vec {AG}}\times {\vec {AB}})\cdot {\vec {AC}}={\begin{vmatrix}-0.16178814&1.49809435&0.093183585\\2&3&1\\-4&4&-1\end{vmatrix}}=}
=
−
0.16178814
⋅
(
−
1
)
1
+
1
|
3
1
4
−
1
|
+
1.49809435
⋅
(
−
1
)
1
+
2
|
2
1
−
4
−
1
|
+
0.093183585
⋅
(
−
1
)
1
+
3
|
2
3
−
4
4
|
=
{\displaystyle =-0.16178814\cdot (-1)^{1+1}{\begin{vmatrix}3&1\\4&-1\end{vmatrix}}+1.49809435\cdot (-1)^{1+2}{\begin{vmatrix}2&1\\-4&-1\end{vmatrix}}+0.093183585\cdot (-1)^{1+3}{\begin{vmatrix}2&3\\-4&4\end{vmatrix}}=}
=
−
0.16178814
⋅
(
−
3
−
4
)
−
1.49809435
⋅
(
−
2
−
(
−
4
)
)
+
0.093183585
⋅
(
8
−
(
−
12
)
)
=
{\displaystyle =-0.16178814\cdot (-3-4)-1.49809435\cdot (-2-(-4))+0.093183585\cdot (8-(-12))=}
=
−
0.16178814
⋅
(
−
7
)
−
1.49809435
⋅
2
+
0.093183585
⋅
20
=
1.13251698
−
2.9961887
+
1.8636717
=
−
0.00000002.
{\displaystyle =-0.16178814\cdot (-7)-1.49809435\cdot 2+0.093183585\cdot 20=1.13251698-2.9961887+1.8636717=-0.00000002.}
Mišrios vektorių sandaugos rezultatas yra 0, todėl vektoriai AG , AB ir AC priklauso tai pačiai plokštumai.
Duotos jėgos F projekcijos
F
x
=
4
{\displaystyle F_{x}=4}
,
F
y
=
4
{\displaystyle F_{y}=4}
,
F
z
=
−
4
2
.
{\displaystyle F_{z}=-4{\sqrt {2}}.}
Rasime jėgos dydį ||F || ir jos veikimo kryptį. Jėgos dydis yra:
|
|
F
|
|
=
F
x
2
+
F
y
2
+
F
z
2
=
4
2
+
4
2
+
(
−
4
2
)
2
=
16
+
16
+
32
=
64
=
8
{\displaystyle ||F||={\sqrt {F_{x}^{2}+F_{y}^{2}+F_{z}^{2}}}={\sqrt {4^{2}+4^{2}+(-4{\sqrt {2}})^{2}}}={\sqrt {16+16+32}}={\sqrt {64}}=8}
. Rasime krypties kosinusus:
cos
α
=
F
x
|
|
F
|
|
=
4
8
=
1
2
{\displaystyle \cos \alpha ={\frac {F_{x}}{||F||}}={\frac {4}{8}}={\frac {1}{2}}}
,
cos
β
=
F
y
|
|
F
|
|
=
4
8
=
1
2
{\displaystyle \cos \beta ={\frac {F_{y}}{||F||}}={\frac {4}{8}}={\frac {1}{2}}}
,
cos
γ
=
F
z
|
|
F
|
|
=
−
4
2
8
=
−
2
2
{\displaystyle \cos \gamma ={\frac {F_{z}}{||F||}}={\frac {-4{\sqrt {2}}}{8}}=-{\frac {\sqrt {2}}{2}}}
. Iš čia randame kampus
α
=
arccos
1
2
=
60
0
,
β
=
arccos
1
2
=
60
0
{\displaystyle \alpha =\arccos {\frac {1}{2}}=60^{0},\;\beta =\arccos {\frac {1}{2}}=60^{0}\;}
,
γ
=
arccos
−
2
2
=
135
0
.
{\displaystyle \gamma =\arccos {\frac {-{\sqrt {2}}}{2}}=135^{0}.}
Vadinasi, jėga ||F || veikia vektoriaus, sudarančio su koordinačių ašimis kampus
α
=
60
0
,
β
=
60
0
,
γ
=
135
0
,
{\displaystyle \alpha =60^{0},\;\beta =60^{0},\;\gamma =135^{0},}
kryptimi.
Vektorius a su ašimis Oy ir Oz sudaro kampus
β
=
γ
=
60
0
.
{\displaystyle \beta =\gamma =60^{0}.}
Rasime kampą
α
,
{\displaystyle \alpha ,}
kurį vektorius a sudaro su Ox ašimi. Kadangi
cos
2
α
+
cos
2
β
+
cos
2
γ
=
1
,
{\displaystyle \cos ^{2}\alpha +\cos ^{2}\beta +\cos ^{2}\gamma =1,}
tai
cos
2
α
=
1
−
cos
2
β
−
cos
2
γ
=
1
−
1
4
−
1
4
=
1
2
.
{\displaystyle \cos ^{2}\alpha =1-\cos ^{2}\beta -\cos ^{2}\gamma =1-{\frac {1}{4}}-{\frac {1}{4}}={\frac {1}{2}}.}
Iš čia
cos
α
=
1
2
=
±
2
2
.
{\displaystyle \cos \alpha ={\sqrt {\frac {1}{2}}}=\pm {\frac {\sqrt {2}}{2}}.}
Tada
α
=
arccos
2
2
=
45
0
{\displaystyle \alpha =\arccos {\frac {\sqrt {2}}{2}}=45^{0}}
arba
α
=
arccos
2
−
2
=
135
0
.
{\displaystyle \alpha =\arccos {\frac {\sqrt {2}}{-2}}=135^{0}.}
Jėga F veikia vektoriaus, sudarančio su koordinačių ašimis kampus
α
=
β
=
120
0
,
γ
=
45
0
,
{\displaystyle \alpha =\beta =120^{0},\;\gamma =45^{0},}
kryptimi. Rasime jėgos F projekcijas, jei ||F ||=6.
F
x
=
F
y
=
|
|
F
|
|
cos
α
=
cos
β
=
6
cos
120
0
=
−
3
;
F
z
=
|
|
F
|
|
cos
γ
=
6
cos
45
0
=
3
2
.
{\displaystyle F_{x}=F_{y}=||F||\cos \alpha =\cos \beta =6\cos 120^{0}=-3;\;F_{z}=||F||\cos \gamma =6\cos 45^{0}=3{\sqrt {2}}.}
Jėgos F dedamosios
F
x
=
−
3
i
;
F
y
=
−
3
j
;
F
z
=
−
3
2
k
.
{\displaystyle F_{x}=-3i;\;F_{y}=-3j;\;F_{z}=-3{\sqrt {2}}k.}
Kampas tarp vektoriaus
a
→
=
(
x
0
;
y
0
;
z
0
)
{\displaystyle {\vec {a}}=(x_{0};y_{0};z_{0})}
ir vektoriaus
b
→
=
(
x
1
;
y
1
;
z
1
)
{\displaystyle {\vec {b}}=(x_{1};y_{1};z_{1})}
yra 90 laipsnių, jeigu jų skaliarinė sandaug lygi nuliui:
a
→
⋅
b
→
=
x
0
x
1
+
y
0
y
1
+
z
0
z
1
=
0.
{\displaystyle {\vec {a}}\cdot {\vec {b}}=x_{0}x_{1}+y_{0}y_{1}+z_{0}z_{1}=0.}
Vektoriai nebūtinai turi išeiti iš to paties taško. Pasinaudoje šia savybe galime sudaryti plokštumos lygtį. Tarkime žinomas vienas plokštumos taškas
M
0
(
x
0
;
y
0
;
z
0
)
.
{\displaystyle M_{0}(x_{0};y_{0};z_{0}).}
Plokštumos taškas
M
0
(
x
0
;
y
0
;
z
0
)
{\displaystyle M_{0}(x_{0};y_{0};z_{0})}
jungiasi su betkuriuo kitu plokštumos tašku kurio koordinatės M(x; y; z) . Tuomet galima sudaryti begalybę vektorių gulinčių ant tos pačios plokštumos ir iš to, kad M yra kintantis taškas užrašome tam tikro vektoriaus koordinates
M
0
M
→
=
(
x
−
x
0
;
y
−
y
0
;
z
−
z
0
)
{\displaystyle {\vec {M_{0}M}}=(x-x_{0};y-y_{0};z-z_{0})}
gulinčio ant plokštumos. Kad visi gauti vektoriai su bet kokiomis taško M koordinatėmis x , y , z gulėtų ant tos pačios plokštumos, reikia, kad būtų tenkinama sąlyga:
M
0
M
→
⋅
O
N
→
=
(
x
−
x
0
)
⋅
(
x
1
−
0
)
+
(
y
−
y
0
)
⋅
(
y
1
−
0
)
+
(
z
−
z
0
)
⋅
(
z
1
−
0
)
=
0
,
{\displaystyle {\vec {M_{0}M}}\cdot {\vec {ON}}=(x-x_{0})\cdot (x_{1}-0)+(y-y_{0})\cdot (y_{1}-0)+(z-z_{0})\cdot (z_{1}-0)=0,}
čia
O
N
→
=
(
x
1
−
0
;
y
1
−
0
;
z
1
−
0
)
=
(
x
1
;
y
1
;
z
1
)
{\displaystyle {\vec {ON}}=(x_{1}-0;y_{1}-0;z_{1}-0)=(x_{1};y_{1};z_{1})}
yra vektorius statmenas vektoriui
M
0
M
→
=
(
x
−
x
0
;
y
−
y
0
;
z
−
z
0
)
;
{\displaystyle {\vec {M_{0}M}}=(x-x_{0};y-y_{0};z-z_{0});}
taškas O (0; 0; 0) yra koordinačių pradžios taškas; taškas
N
(
x
1
;
y
1
;
z
1
)
{\displaystyle N(x_{1};y_{1};z_{1})}
kartu su koordinačių pradžios tašku O (0; 0; 0) sudaro plokštumos normalės vektorių
n
→
=
(
x
1
−
0
;
y
1
−
0
;
z
1
−
0
)
=
(
x
1
;
y
1
;
z
1
)
{\displaystyle {\vec {n}}=(x_{1}-0;y_{1}-0;z_{1}-0)=(x_{1};y_{1};z_{1})}
stameną plokštumai
(
x
−
x
0
)
⋅
x
1
+
(
y
−
y
0
)
⋅
y
1
+
(
z
−
z
0
)
⋅
z
1
=
0.
{\displaystyle (x-x_{0})\cdot x_{1}+(y-y_{0})\cdot y_{1}+(z-z_{0})\cdot z_{1}=0.}
Tokiu budu sudauginę vieną žinomą vektorių
O
N
→
{\displaystyle {\vec {ON}}}
ir vieną kintamą vektorių
M
0
M
→
{\displaystyle {\vec {M_{0}M}}}
ir prilyginę jų skaliarinę sandaugą nuliui (kad visi galimi vektoriai iš vektoriaus
M
0
M
→
{\displaystyle {\vec {M_{0}M}}}
būtų statūs vektoriui
O
N
→
{\displaystyle {\vec {ON}}}
), gavome plokštumos lygtį, kurios normalės vektorius yra
n
→
=
(
x
1
;
y
1
;
z
1
)
.
{\displaystyle {\vec {n}}=(x_{1};y_{1};z_{1}).}